A201639
Triangle read by rows, T(n,k) for 0<=k<=n, generalizes the Motzkin lattice paths with weights of A003645.
Original entry on oeis.org
1, 4, 1, 20, 8, 1, 112, 56, 12, 1, 672, 384, 108, 16, 1, 4224, 2640, 880, 176, 20, 1, 27456, 18304, 6864, 1664, 260, 24, 1, 183040, 128128, 52416, 14560, 2800, 360, 28, 1, 1244672, 905216, 396032, 121856, 27200, 4352, 476, 32, 1, 8599552, 6449664, 2976768
Offset: 0
[0] [1]
[1] [4, 1]
[2] [20, 8, 1]
[3] [112, 56, 12, 1]
[4] [672, 384, 108, 16, 1]
[5] [4224, 2640, 880, 176, 20, 1]
[6] [27456, 18304, 6864, 1664, 260, 24, 1]
[7] [183040, 128128, 52416, 14560, 2800, 360, 28, 1]
-
Flat(List([0..10], n->List([0..n],k->(k+1)*2^(n-k)*Binomial(2*(n+1),n-k)/(n+1)))); # Muniru A Asiru, Apr 07 2018
-
/* As triangle */ [[(k+1)*2^(n-k)*Binomial(2*(n+1),n-k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Apr 07 2018
-
Flatten[Table[(k + 1) 2^(n - k) Binomial[2 (n + 1), n - k] / (n + 1), {n, 0, 11}, {k, 0, n}]] (* Vincenzo Librandi, Apr 07 2018 *)
-
T(n,k) = (k+1)*2^(n-k)*binomial(2*(n+1),n-k)/(n+1);
tabl(nn) = for(n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 07 2018
-
def A201639_triangle(dim):
T = matrix(ZZ,dim,dim)
for n in range(dim): T[n,n] = 1
for n in (1..dim-1):
for k in (0..n-1):
T[n,k] = T[n-1,k-1]+4*T[n-1,k]+4*T[n-1,k+1]
return T
A201639_triangle(9)
A052701
a(0) = 0; for n >= 1, a(n) = 2^(n-1)*C(n-1), where C(n) = A000108(n) Catalan numbers, n>0.
Original entry on oeis.org
0, 1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, 17199104, 120393728, 852017152, 6085836800, 43818024960, 317680680960, 2317200261120, 16992801914880, 125210119372800, 926554883358720, 6882979133521920
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
- M. Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
- Marek Bożejko, Maciej Dołęga, Wiktor Ejsmont, and Światosław R. Gal, Reflection length with two parameters in the asymptotic representation theory of type B/C and applications, arXiv:2104.14530 [math.RT], 2021.
- F. Chapoton and S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv:1310.4521 [math.CO], 2013.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics, Vol. 24, No. 2 (2017), Article P2.3.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 651.
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., Vol. 36, No.4 (2006), pp. 364-387.
- Vincent Pilaud and V. Pons, Permutrees, arXiv preprint arXiv:1606.09643 [math.CO], 2016-2017.
- Index to sequences related to reversion of series.
-
spec := [S,{B=Union(C,Z),S=Union(B,C),C=Prod(S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
InverseSeries[Series[y-2*y^2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 07 2000 *)
Join[{0},Table[2^n CatalanNumber[n],{n,0,30}]] (* Harvey P. Dale, Aug 29 2015 *)
-
a(n)=if(n<1,0,2^(n-1)*(2*n-2)!/(n-1)!/n!)
-
a(n)=if(n<1,0,polcoeff(serreverse(x-2*x^2+x*O(x^n)),n))
-
a(n)=if(n<1,0,polcoeff(2*x/(1+sqrt(1-8*x+O(x^n))),n))
Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Mar 19 2001
A000356
Number of rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle: (2n)!(2n+1)! / (n!^2*(n+1)!(n+2)!).
Original entry on oeis.org
1, 5, 35, 294, 2772, 28314, 306735, 3476330, 40831076, 493684828, 6114096716, 77266057400, 993420738000, 12964140630900, 171393565105575, 2291968851019650, 30961684478686500, 422056646314726500
Offset: 1
- Amitai Regev, Preprint. [From Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..800
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- Anatol N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 034, 56 p. (2016).
- W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), 402-417.
- W. T. Tutte, On the enumeration of four-colored maps, SIAM J. Appl. Math., 17 (1969), 454-460.
-
A000356 := proc(n)
binomial(2*n,n)*binomial(2*n+1,n+1)/(n+1)/(n+2) ;
end proc:
-
CoefficientList[ Series[1 + (HypergeometricPFQ[{1, 3/2, 5/2}, {3, 4}, 16 x] - 1), {x, 0, 17}], x]
Table[(2*n)!*(2*n+2)!/(2*n!*(n+1)!^2*(n+2)!),{n,30}] (* Vincenzo Librandi, Mar 25 2012 *)
A052712
Expansion of e.g.f. (1 + 4*x - sqrt(1-8*x))/8.
Original entry on oeis.org
0, 1, 2, 24, 480, 13440, 483840, 21288960, 1107025920, 66421555200, 4516665753600, 343266597273600, 28834394170982400, 2652764263730380800, 265276426373038080000, 28649854048288112640000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052721,
A052722,
A052723.
-
spec := [S,{B=Prod(C,C),C=Union(B,S),S=Union(B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[n!*2^(n-2)*CatalanNumber[n-1] +Boole[n==1]/2 +Boole[n==0]/4, {n,0,30}] (* G. C. Greubel, May 30 2022 *)
-
[2^(n-2)*factorial(n)*catalan_number(n-1) +bool(n==0)/8 +bool(n==1)/2 for n in (0..30)] # G. C. Greubel, May 30 2022
A107267
A square array of Motzkin related transforms, read by antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 9, 20, 12, 4, 1, 0, 21, 72, 54, 20, 5, 1, 0, 51, 272, 261, 112, 30, 6, 1, 0, 127, 1064, 1323, 672, 200, 42, 7, 1, 0, 323, 4272, 6939, 4224, 1425, 324, 56, 8, 1, 0, 835, 17504, 37341, 27456, 10625, 2664, 490, 72, 9, 1
Offset: 0
Array begins
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 4, 9, 21, 51, ...
1, 2, 6, 20, 72, 272, 1064, ...
1, 3, 12, 54, 261, 1323, 6939, ...
1, 4, 20, 112, 672, 4224, 27456, ...
1, 5, 30, 200, 1425, 10625, 81875, ...
1, 6, 42, 324, 2664, 22896, 203256, ...
A073165
Triangle T(n,k) read by rows: related to David G. Cantor's sigma function.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 8, 1, 1, 5, 20, 35, 16, 1, 1, 6, 35, 112, 126, 32, 1, 1, 7, 56, 294, 672, 462, 64, 1, 1, 8, 84, 672, 2772, 4224, 1716, 128, 1, 1, 9, 120, 1386, 9504, 28314, 27456, 6435, 256, 1, 1, 10, 165, 2640, 28314, 151008, 306735, 183040, 24310, 512, 1
Offset: 0
Triangle rows:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 8, 1;
1, 5, 20, 35, 16, 1;
1, 6, 35, 112, 126, 32, 1;
1, 7, 56, 294, 672, 462, 64, 1;
1, 8, 84, 672, 2772, 4224, 1716, 128, 1;
- Seiichi Manyama, Rows n = 0..139, flattened
- D. G. Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. Reine Angew. Math. (Crelle's J.) 447 (1994), pp. 91-145.
- C. Krattenthaler, A. J. Guttmann and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux, II: with a wall, arXiv:cond-mat/0006367 [cond-mat.stat-mech], 2000.
-
t[n_, k_] := Product[ (n-k+i+j-1) / (i+j-1), {j, 1, k}, {i, 1, j}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, May 23 2012, after PARI *)
-
{T(n, k) = if( k<0 || k>n, 0, prod( i=1, (k+1)\2, binomial(n + 2*i - 1 - k%2, 4*i - 1 - k%2*2)) / prod( i=0, (k-1)\2, binomial(2*k - 2*i - 1, 2*i)))}
-
{T(n, k) = if( k<0 || n<0, 0, prod( j=1, k, prod( i=1, j, (n - k + i + j - 1) / (i + j - 1) )))} /* Michael Somos, Oct 16 2006 */
A102539
Square array T(n,k) read by antidiagonals: T(n,k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1).
Original entry on oeis.org
2, 3, 4, 4, 10, 8, 5, 20, 35, 16, 6, 35, 112, 126, 32, 7, 56, 294, 672, 462, 64, 8, 84, 672, 2772, 4224, 1716, 128, 9, 120, 1386, 9504, 28314, 27456, 6435, 256, 10, 165, 2640, 28314, 151008, 306735, 183040, 24310, 512, 11, 220, 4719, 75504, 674817
Offset: 1
Square array T(n,k) begins:
2, 4, 8, 16, 32, 64, ...
3, 10, 35, 126, 462, 1716, ...
4, 20, 112, 672, 4224, 27456, ...
5, 35, 294, 2772, 28314, 306735, ...
6, 56, 672, 9504, 151008, 2617472, ...
7, 84, 1386, 28314, 674817, 18076916, ...
...
-
T[n_, k_] := Product[(n + i + j - 1)/(i + j - 1), {i, 1, k}, {j, i, k}];
Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 06 2018 *)
A103940
Number of unrooted bipartite n-edge maps in the plane (planar with a distinguished outside face).
Original entry on oeis.org
1, 1, 2, 5, 18, 72, 368, 1982, 11514, 69270, 430384, 2736894, 17752884, 117039548, 782480424, 5294705752, 36206357114, 249894328848, 1739030128872, 12191512867814, 86037243899240, 610827161152012, 4360291880624504, 31280354620428378, 225427088761560916, 1631398499577667252
Offset: 0
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
-
a[n_] := (1/(2 n)) (2^(n - 1) Binomial[2 n, n]/(n+1) + Sum[Boole[0 < k < n] EulerPhi[n/k] d[n/k] 2^(k-1) Binomial[2k, k], {k, Divisors[n]}]) + q[n];
d[n_] := If[EvenQ[n], 2, 1];
q[n_] := If[EvenQ[n], 0, 2^((n-1)/2) Binomial[n-1, (n-1)/2]/(n+1)];
Array[a, 25] (* Jean-François Alcover, Aug 30 2019 *)
-
a(n)={if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021
A240721
Expansion of -(4*x + sqrt(1-8*x) - 1)/(sqrt(1-8*x)*(4*x^2+x) + 8*x^2 - x).
Original entry on oeis.org
1, 7, 49, 351, 2561, 18943, 141569, 1066495, 8085505, 61616127, 471556097, 3621830655, 27902803969, 215530668031, 1668644405249, 12944666918911, 100598145875969, 783027553697791, 6103529011806209, 47636654222999551, 372225072921837569, 2911581699143892991
Offset: 0
-
a := n -> binomial(2*n+2,n)*hypergeom([-n, n+2], [n+3],-1);
seq(round(evalf(a(n), 32)), n=0..19); # Peter Luschny, Jul 16 2014
-
CoefficientList[Series[-(4 x + Sqrt[1 - 8 x] - 1)/(Sqrt[1 - 8 x] (4 x^2 + x) + 8 x^2 - x), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 12 2014 *)
-
a(n) := sum((k+1)*binomial(2*(n+1), n-k)*binomial(n+k+1,n), k, 0, n)/(n+1);
-
a[0]:1$ a[1]:7$ a[2]:49$ a[n] := 8*sum(a[k]*a[n-3-k], k, 0, n-3)+7*sum(a[k]*a[n-2-k], k, 0, n-2)-sum(a[k]*a[n-1-k], k, 0, n-1)+8*a[n-1]$ makelist(a[n], n, 0, 1000); /* Tani Akinari, Jul 16 2014 */
-
x='x+O('x^50); Vec(-(4*x+sqrt(1-8*x)-1)/(sqrt(1-8*x)*(4*x^2+x)+8*x^2-x)) \\ G. C. Greubel, Apr 05 2017
Original entry on oeis.org
1, 8, 80, 896, 10752, 135168, 1757184, 23429120, 318636032, 4402970624, 61641588736, 872465563648, 12463793766400, 179478630236160, 2602440138424320, 37965009078190080, 556820133146787840, 8205770383215820800, 121445401671594147840, 1804331681977970196480, 26900945076762464747520
Offset: 0
-
[4^n*Catalan(n+1): n in [0..25]]; // Vincenzo Librandi, Apr 25 2016
-
Table[4^n CatalanNumber[n + 1], {n, 0, 20}] (* Bruno Berselli, Mar 07 2016 *)
-
cat(n) = binomial(2*n,n)/(n+1);
a(n) = 4^n*cat(n+1);
-
[4^n*catalan_number(n+1) for n in (0..20)] # Bruno Berselli, Mar 07 2016
Showing 1-10 of 20 results.
Comments