Original entry on oeis.org
1, 1, 2, 5, 14, 46, 173, 733, 3436, 17572, 96997, 573268, 3604687, 23990345, 168254444, 1238889493, 9546211068, 76761000444, 642524333589, 5586361188966, 50351455288661, 469653513479395, 4526242614854118, 45005754238016688
Offset: 0
A107269
Diagonal sums of A107267, viewed as a number triangle.
Original entry on oeis.org
1, 0, 1, 1, 3, 6, 16, 44, 136, 457, 1669, 6547, 27334, 120465, 557094, 2692528, 13564940, 71102869, 387132791, 2185813423, 12775466408, 77154694819, 480630407368, 3083443893896, 20344187534051, 137884769704754
Offset: 0
A107264
Expansion of (1 - 3*x - sqrt((1-3*x)^2 - 4*3*x^2))/(2*3*x^2).
Original entry on oeis.org
1, 3, 12, 54, 261, 1323, 6939, 37341, 205011, 1143801, 6466230, 36960300, 213243435, 1240219269, 7263473148, 42799541886, 253556163243, 1509356586897, 9023497273548, 54154973176074, 326154592965879, 1970575690572297
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group and Chebyshev polynomials, arXiv:2502.13673 [math.CO], 2025.
- N. Gabriel, K. Peske, L. Pudwell, and S. Tay, Pattern Avoidance in Ternary Trees, J. Int. Seq. 15 (2012) # 12.1.5.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- L. Pudwell, Pattern avoidance in trees, (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
-
CoefficientList[Series[(1-3*x-Sqrt[1-6*x-3*x^2])/(6*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
A292716
a(n) = [x^n] 1/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - ...))))), a continued fraction.
Original entry on oeis.org
1, 1, 6, 54, 672, 10625, 203256, 4554697, 116842496, 3373056027, 108134200000, 3809118341028, 146170521796608, 6066719073261639, 270692733123460480, 12917478278285156250, 656311833287586742272, 35364920064570086779227, 2014028255250518880457728, 120852950097737555898105210
Offset: 0
-
Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-n x^2, 1 - n x, {i, 1, n}]), {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[2/(1 - n x + Sqrt[1 + n x ((n - 4) x - 2)]), {x, 0, n}], {n, 0, 19}]
Table[n! SeriesCoefficient[E^(n x) Hypergeometric0F1Regularized[2, n x^2], {x, 0, n}], {n, 0, 19}]
Flatten[{1, Table[Sum[Binomial[k+1, n-k+1] * Binomial[n, k] * n^k / (k+1), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
-
{a(n) = polcoef((1+n*x+n*x^2)^(n+1)/(n+1), n)} \\ Seiichi Manyama, May 06 2019
A306684
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - x + sqrt(1 - 2*x + (1-4*k)*x^2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 9, 1, 1, 1, 5, 10, 21, 21, 1, 1, 1, 6, 13, 37, 61, 51, 1, 1, 1, 7, 16, 57, 121, 191, 127, 1, 1, 1, 8, 19, 81, 201, 451, 603, 323, 1, 1, 1, 9, 22, 109, 301, 861, 1639, 1961, 835, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 4, 7, 10, 13, 16, 19, 22, ...
1, 9, 21, 37, 57, 81, 109, 141, ...
1, 21, 61, 121, 201, 301, 421, 561, ...
1, 51, 191, 451, 861, 1451, 2251, 3291, ...
1, 127, 603, 1639, 3445, 6231, 10207, 15583, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
A307910
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 7, 32, 81, 160, 275, 432, ...
0, 19, 136, 459, 1120, 2275, 4104, ...
0, 51, 592, 2673, 8064, 19375, 40176, ...
0, 141, 2624, 15849, 59136, 168125, 400896, ...
0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
-
A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)
A107265
Expansion of (1-5*x-sqrt((1-5*x)^2-4*5*x^2))/(2*5*x^2).
Original entry on oeis.org
1, 5, 30, 200, 1425, 10625, 81875, 646875, 5211875, 42659375, 353725000, 2965031250, 25083859375, 213894609375, 1836516718750, 15863968750000, 137767560546875, 1202116083984375, 10534061644531250, 92664360625000000, 817975366904296875, 7243402948779296875
Offset: 0
-
CoefficientList[Series[(1-5*x-Sqrt[1-10*x+5*x^2])/(10*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
-
x='x+O('x^66); Vec((1-5*x-sqrt(1-10*x+5*x^2))/(10*x^2)) \\ Joerg Arndt, May 15 2013
A107266
Expansion of (1-6*x-sqrt((1-6*x)^2-4*6*x^2))/(2*6*x^2).
Original entry on oeis.org
1, 6, 42, 324, 2664, 22896, 203256, 1849392, 17156448, 161663040, 1543053888, 14887836288, 144963737856, 1422685140480, 14058304458624, 139754913276672, 1396721001457152, 14025182471414784, 141432971217841152, 1431708373864249344, 14543342842406252544, 148198801896234491904
Offset: 0
-
CoefficientList[Series[(1-6*x-Sqrt[1-12*x+12*x^2])/(12*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
-
x='x+O('x^66); Vec((1-6*x-sqrt(1-12*x+12*x^2))/(12*x^2)) \\ Joerg Arndt, May 15 2013
A307968
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 + k*x + sqrt(1 + 2*k*x + k*(k+4)*x^2)).
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 2, 0, 1, -4, 6, 4, -3, 0, 1, -5, 12, 0, -24, -1, 0, 1, -6, 20, -16, -63, 48, 11, 0, 1, -7, 30, -50, -96, 297, 24, -15, 0, 1, -8, 42, -108, -75, 896, -621, -464, -13, 0, 1, -9, 56, -196, 72, 1875, -3904, -1053, 1376, 77, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, 0, 2, 6, 12, 20, 30, ...
0, 2, 4, 0, -16, -50, -108, ...
0, -3, -24, -63, -96, -75, 72, ...
0, -1, 48, 297, 896, 1875, 3024, ...
0, 11, 24, -621, -3904, -13125, -32184, ...
0, -15, -464, -1053, 6912, 53125, 200880, ...
-
T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
Showing 1-9 of 9 results.
Comments