cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A107268 Sums of antidiagonals of A107267.

Original entry on oeis.org

1, 1, 2, 5, 14, 46, 173, 733, 3436, 17572, 96997, 573268, 3604687, 23990345, 168254444, 1238889493, 9546211068, 76761000444, 642524333589, 5586361188966, 50351455288661, 469653513479395, 4526242614854118, 45005754238016688
Offset: 0

Views

Author

Paul Barry, May 15 2005

Keywords

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n-k} 1/(j+1) C(j+1,n-k-j+1) C(n-k,j) k^j.
a(n) = Sum_{k=0..n} Sum_{j=0..k} 1/(j+1) C(j+1,k-j+1) C(k,j) (n-k)^j.

A107269 Diagonal sums of A107267, viewed as a number triangle.

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 16, 44, 136, 457, 1669, 6547, 27334, 120465, 557094, 2692528, 13564940, 71102869, 387132791, 2185813423, 12775466408, 77154694819, 480630407368, 3083443893896, 20344187534051, 137884769704754
Offset: 0

Views

Author

Paul Barry, May 15 2005

Keywords

Formula

a(n)=sum{k=0..n, sum{j=0..n-2k, (1/(j+1))C(j+1, n-2k-j+1)C(n-2k, j)k^j}}

A107264 Expansion of (1 - 3*x - sqrt((1-3*x)^2 - 4*3*x^2))/(2*3*x^2).

Original entry on oeis.org

1, 3, 12, 54, 261, 1323, 6939, 37341, 205011, 1143801, 6466230, 36960300, 213243435, 1240219269, 7263473148, 42799541886, 253556163243, 1509356586897, 9023497273548, 54154973176074, 326154592965879, 1970575690572297
Offset: 0

Views

Author

Paul Barry, May 15 2005

Keywords

Comments

Series reversion of x/(1+3x+3x^2). Transform of 3^n under the matrix A107131. A row of A107267.
Counts colored Motzkin paths, where H(1,0) and U(1,1) each have 3 colors and D(1,-1) one color. - Paul Barry, May 18 2005
Number of Motzkin paths of length n in which both the "up" and the "level" steps come in three colors. - Paul Barry, May 18 2005
Third binomial transform of 1,0,3,0,18,0,... or 3^n*C(n) (A005159) with interpolated zeros. - Paul Barry, May 24 2005
As a continued fraction, the g.f. is 1/(1-3*x-3*x^2/(1-3*x-3*x^2/(1-3*x-3*x^2/(1-3*x-3*x^2/(.... - Paul Barry, Dec 02 2008

Programs

  • Mathematica
    CoefficientList[Series[(1-3*x-Sqrt[1-6*x-3*x^2])/(6*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

G.f.: (1 - 3x - sqrt(1-6x-3x^2))/(6x^2);
a(n) = Sum_{k=0..n} (1/(k+1))*C(k+1, n-k+1)*C(n, k)3^k.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*C(k)*3^(n-k). - Paul Barry, May 18 2005
E.g.f.: exp(3x)*Bessel_I(1, sqrt(3)*2*x)/(sqrt(3)*x). - Paul Barry, May 24 2005
a(n) = (1/Pi)*Integral_{x=3-2*sqrt(3)..3+2*sqrt(3)} x^n*sqrt(-x^2 + 6*x + 3)/6. - Paul Barry, Sep 16 2006
a(n) = A156016(n+1)/3. - Philippe Deléham, Feb 04 2009
D-finite with recurrence: (n+2)*a(n) = 3*(2*n+1)*a(n-1) + 3*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ (5+3*sqrt(3))*(3+2*sqrt(3))^n/(2*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f.: Let F(x) be the g.f. of A348189 with offset 1, then F(x) = x + 2*x^2*F(x)^2*A(x*F(x)). - Alexander Burstein, Feb 14 2022

A292716 a(n) = [x^n] 1/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 6, 54, 672, 10625, 203256, 4554697, 116842496, 3373056027, 108134200000, 3809118341028, 146170521796608, 6066719073261639, 270692733123460480, 12917478278285156250, 656311833287586742272, 35364920064570086779227, 2014028255250518880457728, 120852950097737555898105210
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 21 2017

Keywords

Comments

Also coefficient of x^n in the expansion of 1/(n+1) * (1 + n*x + n*x^2)^(n+1). - Seiichi Manyama, May 06 2019

Crossrefs

Main diagonal of A107267.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-n x^2, 1 - n x, {i, 1, n}]), {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[2/(1 - n x + Sqrt[1 + n x ((n - 4) x - 2)]), {x, 0, n}], {n, 0, 19}]
    Table[n! SeriesCoefficient[E^(n x) Hypergeometric0F1Regularized[2, n x^2], {x, 0, n}], {n, 0, 19}]
    Flatten[{1, Table[Sum[Binomial[k+1, n-k+1] * Binomial[n, k] * n^k / (k+1), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
  • PARI
    {a(n) = polcoef((1+n*x+n*x^2)^(n+1)/(n+1), n)} \\ Seiichi Manyama, May 06 2019

Formula

a(n) = [x^n] 2/(1 - n*x + sqrt(1 + n*x*((n - 4)*x - 2))).
a(n) = n! * [x^n] exp(n*x)*BesselI(1,2*sqrt(n)*x)/(sqrt(n)*x), for n > 0.
a(n) = A107267(n,n).
a(n) ~ exp(2*sqrt(n) - 2) * n^(n - 3/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, May 05 2019

A306684 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - x + sqrt(1 - 2*x + (1-4*k)*x^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 9, 1, 1, 1, 5, 10, 21, 21, 1, 1, 1, 6, 13, 37, 61, 51, 1, 1, 1, 7, 16, 57, 121, 191, 127, 1, 1, 1, 8, 19, 81, 201, 451, 603, 323, 1, 1, 1, 9, 22, 109, 301, 861, 1639, 1961, 835, 1
Offset: 0

Views

Author

Seiichi Manyama, May 06 2019

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,    1,    1,     1,     1, ...
   1,   1,   1,    1,    1,    1,     1,     1, ...
   1,   2,   3,    4,    5,    6,     7,     8, ...
   1,   4,   7,   10,   13,   16,    19,    22, ...
   1,   9,  21,   37,   57,   81,   109,   141, ...
   1,  21,  61,  121,  201,  301,   421,   561, ...
   1,  51, 191,  451,  861, 1451,  2251,  3291, ...
   1, 127, 603, 1639, 3445, 6231, 10207, 15583, ...
		

Crossrefs

Main diagonal gives A307906.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of 1/(n+1) * (1 + x + k*x^2)^(n+1).
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j)/(j+1) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * A000108(j).
(n+2) * A(n,k) = (2*n+1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).

A307910 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Examples

			Square array begins:
   1,   1,     1,     1,      1,       1,       1, ...
   0,   1,     2,     3,      4,       5,       6, ...
   0,   3,     8,    15,     24,      35,      48, ...
   0,   7,    32,    81,    160,     275,     432, ...
   0,  19,   136,   459,   1120,    2275,    4104, ...
   0,  51,   592,  2673,   8064,   19375,   40176, ...
   0, 141,  2624, 15849,  59136,  168125,  400896, ...
   0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
		

Crossrefs

Columns k=0..4 give A000007, A002426, A006139, A122868, A059304.
Main diagonal gives A092366.

Programs

  • Mathematica
    A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k).

A107265 Expansion of (1-5*x-sqrt((1-5*x)^2-4*5*x^2))/(2*5*x^2).

Original entry on oeis.org

1, 5, 30, 200, 1425, 10625, 81875, 646875, 5211875, 42659375, 353725000, 2965031250, 25083859375, 213894609375, 1836516718750, 15863968750000, 137767560546875, 1202116083984375, 10534061644531250, 92664360625000000, 817975366904296875, 7243402948779296875
Offset: 0

Views

Author

Paul Barry, May 15 2005

Keywords

Comments

Series reversion of x/(1+5x+5x^2). Transform of 5^n under the matrix A107131. A row of A107267.
Counts colored Motzkin paths, where H(1,0) and U(1,1) each have 5 colors and D(1,-1) one color. - Paul Barry, May 16 2005

Programs

  • Mathematica
    CoefficientList[Series[(1-5*x-Sqrt[1-10*x+5*x^2])/(10*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-5*x-sqrt(1-10*x+5*x^2))/(10*x^2)) \\ Joerg Arndt, May 15 2013

Formula

G.f.: (1-5*x-sqrt(1-10*x+5*x^2))/(10*x^2).
a(n) = Sum_{k=0..n} (1/(k+1)) * C(k+1,n-k+1) * C(n, k) * 5^k.
E.g.f.: a(n) = n!* [x^n] exp(5*x)*BesselI(1,2*sqrt(5)*x) /(sqrt(5)*x). -Peter Luschny, Aug 25 2012
D-finite with recurrence: (n+2)*a(n) = 5*(2*n+1)*a(n-1) - 5*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(38+17*sqrt(5))*(5+2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f.: 1/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017

A107266 Expansion of (1-6*x-sqrt((1-6*x)^2-4*6*x^2))/(2*6*x^2).

Original entry on oeis.org

1, 6, 42, 324, 2664, 22896, 203256, 1849392, 17156448, 161663040, 1543053888, 14887836288, 144963737856, 1422685140480, 14058304458624, 139754913276672, 1396721001457152, 14025182471414784, 141432971217841152, 1431708373864249344, 14543342842406252544, 148198801896234491904
Offset: 0

Views

Author

Paul Barry, May 15 2005

Keywords

Comments

Series reversion of x/(1+6x+6x^2). Transform of 6^n under the matrix A107131. A row of A107267.
Counts colored Motzkin paths, where H(1,0) and U(1,1) each have 6 colors and D(1,-1) one color. - Paul Barry, May 16 2005

Programs

  • Mathematica
    CoefficientList[Series[(1-6*x-Sqrt[1-12*x+12*x^2])/(12*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-6*x-sqrt(1-12*x+12*x^2))/(12*x^2)) \\ Joerg Arndt, May 15 2013

Formula

G.f.: (1-6*x-sqrt(1-12*x+12*x^2))/(12*x^2).
a(n) = Sum_{k=0..n} 1/(k+1) * C(k+1,n-k+1) * C(n,k) * 6^k.
E.g.f.: a(n) = n! * [x^n] exp(6*x)*BesselI(1, 2*sqrt(6)*x)/(sqrt(6)*x). -Peter Luschny, Aug 25 2012
D-finite with recurrence: (n+2)*a(n) = 6*(2*n+1)*a(n-1) - 12*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(44+18*sqrt(6))*(6+2*sqrt(6))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f.: 1/(1 - 6*x - 6*x^2/(1 - 6*x - 6*x^2/(1 - 6*x - 6*x^2/(1 - 6*x - 6*x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017

A307968 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 + k*x + sqrt(1 + 2*k*x + k*(k+4)*x^2)).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 2, 0, 1, -4, 6, 4, -3, 0, 1, -5, 12, 0, -24, -1, 0, 1, -6, 20, -16, -63, 48, 11, 0, 1, -7, 30, -50, -96, 297, 24, -15, 0, 1, -8, 42, -108, -75, 896, -621, -464, -13, 0, 1, -9, 56, -196, 72, 1875, -3904, -1053, 1376, 77, 0
Offset: 0

Views

Author

Seiichi Manyama, May 08 2019

Keywords

Examples

			Square array begins:
   1,   1,    1,     1,     1,      1,      1, ...
   0,  -1,   -2,    -3,    -4,     -5,     -6, ...
   0,   0,    2,     6,    12,     20,     30, ...
   0,   2,    4,     0,   -16,    -50,   -108, ...
   0,  -3,  -24,   -63,   -96,    -75,     72, ...
   0,  -1,   48,   297,   896,   1875,   3024, ...
   0,  11,   24,  -621, -3904, -13125, -32184, ...
   0, -15, -464, -1053,  6912,  53125, 200880, ...
		

Crossrefs

Columns k=0..2 give A000007, A007440(n+1), A307969.
Main diagonal gives A307946.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of 1/(n+1) * (1 - k*x - k*x^2)^(n+1).
A(n,k) = Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n,j) * binomial(n-j,j)/(j+1) = Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n,2*j) * A000108(j).
(n+2) * A(n,k) = -k * (2*n+1) * A(n-1,k) - k * (k+4) * (n-1) * A(n-2,k).
Showing 1-9 of 9 results.