cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107267 A square array of Motzkin related transforms, read by antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 9, 20, 12, 4, 1, 0, 21, 72, 54, 20, 5, 1, 0, 51, 272, 261, 112, 30, 6, 1, 0, 127, 1064, 1323, 672, 200, 42, 7, 1, 0, 323, 4272, 6939, 4224, 1425, 324, 56, 8, 1, 0, 835, 17504, 37341, 27456, 10625, 2664, 490, 72, 9, 1
Offset: 0

Views

Author

Paul Barry, May 15 2005

Keywords

Comments

Rows are transforms of k^n, k>=0, under the matrix A107131. As a number triangle, with T(n,k)=if(k<=n,sum{j=0..n-k, (1/(j+1))C(j+1,n-k-j+1)C(n-k,j)k^j},0), row sums are A107268 and diagonal sums are A107269. Rows are series reversions of x/(1+kx+kx^2), k>=0. Conjecture: rows count weighted Motzkin paths.
Row k counts colored Motzkin paths, where H(1,0) and U(1,1) each have k colors and D(1,-1) one color. - Paul Barry, May 16 2005

Examples

			Array begins
  1, 0,  0,   0,    0,     0,      0, ...
  1, 1,  2,   4,    9,    21,     51, ...
  1, 2,  6,  20,   72,   272,   1064, ...
  1, 3, 12,  54,  261,  1323,   6939, ...
  1, 4, 20, 112,  672,  4224,  27456, ...
  1, 5, 30, 200, 1425, 10625,  81875, ...
  1, 6, 42, 324, 2664, 22896, 203256, ...
		

Crossrefs

Main diagonal gives A292716.
Cf. A000108.

Formula

Number array T(n,k) = Sum_{j=0..k} n^j * binomial(k,j) * binomial(j+1,k-j+1)/(j+1).
G.f. of row k: 1/(1 - k*x - k*x^2/(1 - k*x - k*x^2/(1 - k*x - k*x^2/(1 - k*x - k*x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
From Seiichi Manyama, May 05 2019: (Start)
T(n,k) = Sum_{j=0..floor(k/2)} n^(k-j) * binomial(k,2*j) * binomial(2*j,j)/(j+1) = Sum_{j=0..floor(k/2)} n^(k-j) * binomial(k,2*j) * A000108(j).
(k+2) * T(n,k) = n * (2*k+1) * T(n,k-1) - n * (n-4) * (k-1) * T(n,k-2). (End)

A200031 G.f. satisfies: A(x) = 1 + x + 3*x*A(x) + x*A(x)^2.

Original entry on oeis.org

1, 5, 25, 150, 1000, 7125, 53125, 409375, 3234375, 26059375, 213296875, 1768625000, 14825156250, 125419296875, 1069473046875, 9182583593750, 79319843750000, 688837802734375, 6010580419921875, 52670308222656250, 463321803125000000, 4089876834521484375, 36217014743896484375
Offset: 0

Views

Author

Paul D. Hanna, Nov 12 2011

Keywords

Comments

Counts colored Motzkin paths starting with a level step H(1,0), where H(1,0) and U(1,1) each have 5 colors and D(1,-1) has one color. - Alexander Burstein, May 27 2021

Examples

			G.f.: A(x) = 1 + 5*x + 25*x^2 + 150*x^3 + 1000*x^4 + 7125*x^5 + 53125*x^6 + ...
The g.f. satisfies A(x) = 1 + x*(1 + 3*A(x) + A(x)^2) where:
A(x)^2 = 1 + 10*x + 75*x^2 + 550*x^3 + 4125*x^4 + 31750*x^5 + 250000*x^6 + ...
		

Crossrefs

Cf. A107265.

Programs

  • Mathematica
    CoefficientList[Series[(1-3*x-Sqrt[1-10*x+5*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=polcoeff((1-3*x - sqrt(1-10*x+5*x^2 +x^2*O(x^n)))/(2*x),n)}

Formula

G.f.: A(x) = (1-3*x - sqrt(1 - 10*x + 5*x^2))/(2*x).
Recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - 5*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ sqrt(10+5*sqrt(5))*(5+2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012. Equivalently, a(n) ~ 5^((n+1)/2) * phi^(3*n + 3/2) / (2*sqrt(Pi)*n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = Sum_{k=0..floor((n-1)/2)}{binomial(n-1,2k)*A000108(k)*5^{n-k}} for n>=1. - Alexander Burstein, May 24 2021
G.f.: Let B(x) = 2 + A(x) and let G(x) be the g.f. for A344623. Then G(x) = 1 + x*G(x)*B(x^2*G(x)). - Alexander Burstein, May 25 2021
a(n) = 5*A107265(n-1) for n >= 1. - Alexander Burstein, May 27 2021
Showing 1-2 of 2 results.