A107267
A square array of Motzkin related transforms, read by antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 9, 20, 12, 4, 1, 0, 21, 72, 54, 20, 5, 1, 0, 51, 272, 261, 112, 30, 6, 1, 0, 127, 1064, 1323, 672, 200, 42, 7, 1, 0, 323, 4272, 6939, 4224, 1425, 324, 56, 8, 1, 0, 835, 17504, 37341, 27456, 10625, 2664, 490, 72, 9, 1
Offset: 0
Array begins
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 4, 9, 21, 51, ...
1, 2, 6, 20, 72, 272, 1064, ...
1, 3, 12, 54, 261, 1323, 6939, ...
1, 4, 20, 112, 672, 4224, 27456, ...
1, 5, 30, 200, 1425, 10625, 81875, ...
1, 6, 42, 324, 2664, 22896, 203256, ...
A247496
a(n) = n!*[x^n](exp(n*x)*BesselI_{1}(2*x)/x), n>=0, main diagonal of A247495.
Original entry on oeis.org
1, 1, 5, 36, 354, 4425, 67181, 1200745, 24699662, 574795035, 14930563042, 428235433978, 13442267711940, 458373150076335, 16872717817840509, 666835739823870900, 28163028244810505622, 1265837029802096365275, 60330098878933736719190, 3039079334694016053006276
Offset: 0
-
Flatten[{1,Table[n^n*HypergeometricPFQ[{1/2-n/2, -n/2}, {2}, 4/n^2],{n,1,20}]}] (* Vaclav Kotesovec, Dec 12 2014 *)
-
{a(n) = sum(k=0, n\2, n^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1))} \\ Seiichi Manyama, May 05 2019
-
{a(n) = polcoef((1+n*x+x^2)^(n+1)/(n+1), n)} \\ Seiichi Manyama, May 06 2019
-
a = lambda n: 1 if n==0 else n^n*hypergeometric([1/2-n/2, -n/2], [2], 4/n^2).simplify()
[a(n) for n in range(20)]
A307906
Coefficient of x^n in 1/(n+1) * (1 + x + n*x^2)^(n+1).
Original entry on oeis.org
1, 1, 3, 10, 57, 301, 2251, 15583, 138209, 1153603, 11592451, 111381348, 1235739385, 13276480803, 159935056555, 1884023828326, 24356065951617, 310189106485419, 4266048524240323, 58124516559463590, 844705360693479801, 12213285476055278959, 186543178982826381387
Offset: 0
-
Table[Hypergeometric2F1[1/2 - n/2, -n/2, 2, 4*n], {n, 0, 20}] (* Vaclav Kotesovec, May 05 2019 *)
-
{a(n) = polcoef((1+x+n*x^2)^(n+1)/(n+1), n)}
-
{a(n) = sum(k=0, n\2, n^k*binomial(n, k)*binomial(n-k, k)/(k+1))}
-
{a(n) = sum(k=0, n\2, n^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1))}
A307946
Coefficient of x^n in 1/(n+1) * (1 - n*x - n*x^2)^(n+1).
Original entry on oeis.org
1, -1, 2, 0, -96, 1875, -32184, 554631, -9773056, 172718325, -2874200000, 35973317666, 218394869760, -46968959184459, 2890848443624064, -147665402789062500, 7121567693920010240, -337669517265832692843, 15985827659730523364352, -759295252512454596032456
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-n)^(n-k) * Binomial[n, 2*k] * CatalanNumber[k], {k, 0, Floor[n/2]}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
Join[{1}, Table[(-n)^n * Hypergeometric2F1[1/2 - n/2, -n/2, 2, -4/n], {n, 1, 20}]] (* Vaclav Kotesovec, May 12 2021 *)
-
{a(n) = polcoef((1-n*x-n*x^2)^(n+1)/(n+1), n)}
-
{a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, k)*binomial(n-k, k)/(k+1))}
-
{a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1))}
A294642
a(n) = n! * [x^n] exp(n*x)*BesselI(1,2*sqrt(2)*x)/(sqrt(2)*x).
Original entry on oeis.org
1, 1, 6, 45, 456, 5825, 89896, 1627437, 33822944, 793783233, 20765009344, 599157626925, 18904594000128, 647524807918209, 23929038677825152, 948995910652193325, 40203601321988822528, 1812025020244371552897, 86577002960871477916672, 4371100278517527047687213
Offset: 0
-
Simplify[Table[n! SeriesCoefficient[Exp[n x] BesselI[1, 2 Sqrt[2] x]/(Sqrt[2] x), {x, 0, n}], {n, 0, 19}]]
Table[SeriesCoefficient[(1 - n x - Sqrt[1 - 2 n x + (n^2 - 8) x^2])/(4 x^2), {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-2 x^2, 1 - n x, {i, 1, n}]), {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[Sum[2^k n^(n - 2 k) Binomial[n, 2 k] CatalanNumber[k], {k, 0, Floor[n/2]}], {n, 1, 19}]]
Join[{1}, Table[n^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {2}, 8/n^2], {n, 1, 19}]]
Showing 1-5 of 5 results.
Comments