cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306684 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - x + sqrt(1 - 2*x + (1-4*k)*x^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 9, 1, 1, 1, 5, 10, 21, 21, 1, 1, 1, 6, 13, 37, 61, 51, 1, 1, 1, 7, 16, 57, 121, 191, 127, 1, 1, 1, 8, 19, 81, 201, 451, 603, 323, 1, 1, 1, 9, 22, 109, 301, 861, 1639, 1961, 835, 1
Offset: 0

Views

Author

Seiichi Manyama, May 06 2019

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,    1,    1,     1,     1, ...
   1,   1,   1,    1,    1,    1,     1,     1, ...
   1,   2,   3,    4,    5,    6,     7,     8, ...
   1,   4,   7,   10,   13,   16,    19,    22, ...
   1,   9,  21,   37,   57,   81,   109,   141, ...
   1,  21,  61,  121,  201,  301,   421,   561, ...
   1,  51, 191,  451,  861, 1451,  2251,  3291, ...
   1, 127, 603, 1639, 3445, 6231, 10207, 15583, ...
		

Crossrefs

Main diagonal gives A307906.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of 1/(n+1) * (1 + x + k*x^2)^(n+1).
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j)/(j+1) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * A000108(j).
(n+2) * A(n,k) = (2*n+1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).

A307947 Coefficient of x^n in 1/(n+1) * (1 + x - n*x^2)^(n+1).

Original entry on oeis.org

1, 1, -1, -8, 9, 201, -89, -8721, -5599, 540595, 1091551, -43580206, -159753527, 4318835223, 24185472039, -506659112324, -3987724324735, 68460979242171, 722884820238847, -10431188525128096, -143862807220127799, 1761112732849258195, 31284729872945906919
Offset: 0

Views

Author

Seiichi Manyama, May 07 2019

Keywords

Comments

Also coefficient of x^n in the expansion of 2/(1 - x + sqrt(1 - 2*x + (1+4*n)*x^2)).

Crossrefs

Programs

  • Maple
    f:= n -> coeff(1/(n+1)*(1+x-n*x^2)^(n+1),x,n):
    map(f, [$0..30]); # Robert Israel, May 08 2019
  • Mathematica
    a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[n, 2*k] * CatalanNumber[k], {k, 0, Floor[n/2]}]; Array[a, 23, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
    Table[Hypergeometric2F1[1/2 - n/2, -n/2, 2, -4*n], {n, 0, 20}] (* Vaclav Kotesovec, May 12 2021 *)
  • PARI
    {a(n) = polcoef((1+x-n*x^2)^(n+1)/(n+1), n)}
    
  • PARI
    {a(n) = sum(k=0, n\2, (-n)^k*binomial(n, k)*binomial(n-k, k)/(k+1))}
    
  • PARI
    {a(n) = sum(k=0, n\2, (-n)^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1))}

Formula

a(n) = Sum_{k=0..floor(n/2)} (-n)^k * binomial(n,k) * binomial(n-k,k)/(k+1) = Sum_{k=0..floor(n/2)} (-n)^k * binomial(n,2*k) * A000108(k).
a(n) = Hypergeometric2F1(1/2 - n/2, -n/2, 2, -4*n). - Vaclav Kotesovec, May 12 2021
Showing 1-2 of 2 results.