cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A292716 a(n) = [x^n] 1/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - n*x - n*x^2/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 6, 54, 672, 10625, 203256, 4554697, 116842496, 3373056027, 108134200000, 3809118341028, 146170521796608, 6066719073261639, 270692733123460480, 12917478278285156250, 656311833287586742272, 35364920064570086779227, 2014028255250518880457728, 120852950097737555898105210
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 21 2017

Keywords

Comments

Also coefficient of x^n in the expansion of 1/(n+1) * (1 + n*x + n*x^2)^(n+1). - Seiichi Manyama, May 06 2019

Crossrefs

Main diagonal of A107267.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-n x^2, 1 - n x, {i, 1, n}]), {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[2/(1 - n x + Sqrt[1 + n x ((n - 4) x - 2)]), {x, 0, n}], {n, 0, 19}]
    Table[n! SeriesCoefficient[E^(n x) Hypergeometric0F1Regularized[2, n x^2], {x, 0, n}], {n, 0, 19}]
    Flatten[{1, Table[Sum[Binomial[k+1, n-k+1] * Binomial[n, k] * n^k / (k+1), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
  • PARI
    {a(n) = polcoef((1+n*x+n*x^2)^(n+1)/(n+1), n)} \\ Seiichi Manyama, May 06 2019

Formula

a(n) = [x^n] 2/(1 - n*x + sqrt(1 + n*x*((n - 4)*x - 2))).
a(n) = n! * [x^n] exp(n*x)*BesselI(1,2*sqrt(n)*x)/(sqrt(n)*x), for n > 0.
a(n) = A107267(n,n).
a(n) ~ exp(2*sqrt(n) - 2) * n^(n - 3/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, May 05 2019

A247495 Generalized Motzkin numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k](exp(n*x)* BesselI_{1}(2*x)/x), n>=0, k>=0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 2, 4, 5, 3, 1, 0, 9, 14, 10, 4, 1, 5, 21, 42, 36, 17, 5, 1, 0, 51, 132, 137, 76, 26, 6, 1, 14, 127, 429, 543, 354, 140, 37, 7, 1, 0, 323, 1430, 2219, 1704, 777, 234, 50, 8, 1, 42, 835, 4862, 9285, 8421, 4425, 1514, 364, 65, 9, 1
Offset: 0

Views

Author

Peter Luschny, Dec 11 2014

Keywords

Comments

This two-dimensional array of numbers can be seen as a generalization of the Motzkin numbers A001006 for two reasons: The case n=1 reduces to the Motzkin numbers and the columns are the values of the Motzkin polynomials M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j evaluated at the nonnegative integers.

Examples

			Square array starts:
[n\k][0][1] [2]  [3]   [4]   [5]    [6]     [7]      [8]
[0]   1, 0,  1,   0,    2,    0,     5,      0,      14, ...  A126120
[1]   1, 1,  2,   4,    9,   21,    51,    127,     323, ...  A001006
[2]   1, 2,  5,  14,   42,  132,   429,   1430,    4862, ...  A000108
[3]   1, 3, 10,  36,  137,  543,  2219,   9285,   39587, ...  A002212
[4]   1, 4, 17,  76,  354, 1704,  8421,  42508,  218318, ...  A005572
[5]   1, 5, 26, 140,  777, 4425, 25755, 152675,  919139, ...  A182401
[6]   1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, ...  A025230
A000012,A001477,A002522,A079908, ...
.
Triangular array starts:
              1,
             0, 1,
           1, 1, 1,
          0, 2, 2, 1,
        2, 4, 5, 3, 1,
      0, 9, 14, 10, 4, 1,
   5, 21, 42, 36, 17, 5, 1,
0, 51, 132, 137, 76, 26, 6, 1.
		

Crossrefs

Programs

  • Maple
    # RECURRENCE
    T := proc(n,k) option remember; if k=0 then 1 elif k=1 then n else
    (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) fi end:
    seq(print(seq(T(n,k),k=0..9)),n=0..6);
    # OGF (row)
    ogf := n -> (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2):
    seq(print(seq(coeff(series(ogf(n),x,12),x,k),k=0..9)),n=0..6);
    # EGF (row)
    egf := n -> exp(n*x)*hypergeom([],[2],x^2):
    seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..9)),n=0..6);
    # MOTZKIN polynomial (column)
    A097610 := proc(n,k) if type(n-k,odd) then 0 else n!/(k!*((n-k)/2)!^2* ((n-k)/2+1)) fi end: M := (k,x) -> add(A097610(k,j)*x^j,j=0..k):
    seq(print(seq(M(k,n),n=0..9)),k=0..6);
    # OGF (column)
    col := proc(n, len) local G; G := A247497_row(n); (-1)^(n+1)* add(G[k+1]/(x-1)^(k+1), k=0..n); seq(coeff(series(%, x, len+1),x,j), j=0..len) end: seq(print(col(n,8)), n=0..6); # Peter Luschny, Dec 14 2014
  • Mathematica
    T[0, k_] := If[EvenQ[k], CatalanNumber[k/2], 0];
    T[n_, k_] := n^k*Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4/n^2];
    Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
  • Sage
    def A247495(n,k):
        if n==0: return(k//2+1)*factorial(k)/factorial(k//2+1)^2 if is_even(k) else 0
        return n^k*hypergeometric([(1-k)/2,-k/2],[2],4/n^2).simplify()
    for n in (0..7): print([A247495(n,k) for k in range(11)])

Formula

T(n,k) = (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) for k>=2.
T(n,k) = Sum_{j=0..floor(k/2)} n^(k-2*j)*binomial(k,2*j)*binomial(2*j,j)/(j+1).
T(n,k) = n^k*hypergeom([(1-k)/2,-k/2], [2], 4/n^2) for n>0.
T(n,n) = A247496(n).
O.g.f. for row n: (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2).
O.g.f. for row n: R(x)/x where R(x) is series reversion of x/(1+n*x+x^2).
E.g.f. for row n: exp(n*x)*hypergeom([],[2],x^2).
O.g.f. for column k: the k-th column consists of the values of the k-th Motzkin polynomial M_{k}(x) evaluated at x = 0,1,2,...; M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j = sum_{j=0..k} (-1)^j*binomial(k,j)*A001006(j)*(x+1)^(k-j).
O.g.f. for column k: sum_{j=0..k} (-1)^(k+1)*A247497(k,j)/(x-1)^(j+1). - Peter Luschny, Dec 14 2014
O.g.f. for row n: 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
T(n,k) is the coefficient of x^k in the expansion of 1/(k+1) * (1 + n*x + x^2)^(k+1). - Seiichi Manyama, May 07 2019

A307906 Coefficient of x^n in 1/(n+1) * (1 + x + n*x^2)^(n+1).

Original entry on oeis.org

1, 1, 3, 10, 57, 301, 2251, 15583, 138209, 1153603, 11592451, 111381348, 1235739385, 13276480803, 159935056555, 1884023828326, 24356065951617, 310189106485419, 4266048524240323, 58124516559463590, 844705360693479801, 12213285476055278959, 186543178982826381387
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Comments

Also coefficient of x^n in the expansion of 2/(1 - x + sqrt(1 - 2*x + (1 - 4*n)*x^2)).

Crossrefs

Main diagonal of A306684.

Programs

  • Mathematica
    Table[Hypergeometric2F1[1/2 - n/2, -n/2, 2, 4*n], {n, 0, 20}] (* Vaclav Kotesovec, May 05 2019 *)
  • PARI
    {a(n) = polcoef((1+x+n*x^2)^(n+1)/(n+1), n)}
    
  • PARI
    {a(n) = sum(k=0, n\2, n^k*binomial(n, k)*binomial(n-k, k)/(k+1))}
    
  • PARI
    {a(n) = sum(k=0, n\2, n^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1))}

Formula

a(n) = [x^n] (1 - x - sqrt(1 - 2*x + (1 - 4*n)*x^2))/(2*n*x^2).
a(n) = Sum_{k=0..floor(n/2)} n^k * binomial(n,k) * binomial(n-k,k)/(k+1) = Sum_{k=0..floor(n/2)} n^k * binomial(n,2*k) * A000108(k).
a(n) ~ exp(sqrt(n)/2 - 1/8) * 2^(n + 1/2) * n^((n-3)/2) / sqrt(Pi). - Vaclav Kotesovec, May 05 2019

A294573 a(n) = n! * [x^n] exp((n+1)*x)*BesselI(1,2*x)/x.

Original entry on oeis.org

1, 2, 10, 76, 777, 9996, 155139, 2821400, 58856963, 1385621260, 36343079188, 1051024082472, 33226817252215, 1140040324751160, 42193259673938754, 1675570154136359472, 71069261432474378715, 3206616936773061141900, 153358034674756782660342, 7749560706936442485607560
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 02 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A001006.

Crossrefs

Diagonal of A247495.

Programs

  • Maple
    S:= series(exp((n+1)*x)*BesselI(1,2*x)/x, x, 102):
    seq(simplify(n!*coeff(S,x,n)),n=0..100); # Robert Israel, Nov 03 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[(n + 1) x] BesselI[1, 2 x]/x, {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[(1 - (n + 1) x - Sqrt[(1 - (n - 1) x) (1 - (n + 3) x)])/(2 x^2), {x, 0, n}], {n, 0, 19}]
    Table[(n + 1)^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {2}, 4/(n + 1)^2], {n, 0, 19}]

Formula

a(n) = [x^n] (1 - (n + 1)*x - sqrt((1 - (n - 1)*x)*(1 - (n + 3)*x)))/(2*x^2).
a(n) ~ exp(1) * BesselI(1,2) * n^n. - Vaclav Kotesovec, Nov 13 2017

A294642 a(n) = n! * [x^n] exp(n*x)*BesselI(1,2*sqrt(2)*x)/(sqrt(2)*x).

Original entry on oeis.org

1, 1, 6, 45, 456, 5825, 89896, 1627437, 33822944, 793783233, 20765009344, 599157626925, 18904594000128, 647524807918209, 23929038677825152, 948995910652193325, 40203601321988822528, 1812025020244371552897, 86577002960871477916672, 4371100278517527047687213
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Simplify[Table[n! SeriesCoefficient[Exp[n x] BesselI[1, 2 Sqrt[2] x]/(Sqrt[2] x), {x, 0, n}], {n, 0, 19}]]
    Table[SeriesCoefficient[(1 - n x - Sqrt[1 - 2 n x + (n^2 - 8) x^2])/(4 x^2), {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-2 x^2, 1 - n x, {i, 1, n}]), {x, 0, n}], {n, 0, 19}]
    Join[{1}, Table[Sum[2^k n^(n - 2 k) Binomial[n, 2 k] CatalanNumber[k], {k, 0, Floor[n/2]}], {n, 1, 19}]]
    Join[{1}, Table[n^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {2}, 8/n^2], {n, 1, 19}]]

Formula

a(n) = [x^n] (1 - n*x - sqrt(1 - 2*n*x + (n^2 - 8)*x^2))/(4*x^2).
a(n) = [x^n] 1/(1 - n*x - 2*x^2/(1 - n*x - 2*x^2/(1 - n*x - 2*x^2/(1 - n*x - 2*x^2/(1 - ...))))), a continued fraction.
a(n) = Sum_{k=0..floor(n/2)} 2^k*n^(n-2*k)*binomial(n,2*k)*A000108(k).
a(n) = n^n*2F1(1/2-n/2,-n/2; 2; 8/n^2).
a(n) ~ c * n^n, where c = BesselI(1, 2*sqrt(2))/sqrt(2) = 2.3948330992734... - Vaclav Kotesovec, Nov 06 2017

A302286 a(n) = [x^n] 1/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 2, 12, 116, 1530, 25422, 507696, 11814728, 313426350, 9324499610, 307171539576, 11091813369276, 435408606414964, 18453269887229478, 839464708754178240, 40786587211854543120, 2107367668847505288726, 115352793604678609311282, 6667002839420189781109800, 405656528458830256952396420
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 04 2018

Keywords

Crossrefs

Main diagonal of A247507.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-x, 1 - n x, {k, 1, n}]), {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[(1 - n x - Sqrt[1 - (2 n + 4) x + n^2 x^2])/(2 x), {x, 0, n}], {n, 0, 19}]
    Join[{1}, Table[(1/n) Sum[(n + 1)^k Binomial[n, k] Binomial[n, k - 1], {k, 0, n}], {n, 1, 19}]]
    Table[(n + 1) Hypergeometric2F1[1 - n, -n, 2, n + 1], {n, 0, 19}]

Formula

a(n) = [x^n] (1 - n*x - sqrt(1 - (2*n + 4)*x + n^2*x^2))/(2*x).
a(0) = 1; a(n) = (1/n)*Sum_{k=0..n} (n + 1)^k*binomial(n,k)*binomial(n,k-1).
a(n) = A247507(n,n).
a(n) ~ exp(2*sqrt(n)) * n^(n - 3/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Jun 08 2019
Showing 1-6 of 6 results.