cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247496 a(n) = n!*[x^n](exp(n*x)*BesselI_{1}(2*x)/x), n>=0, main diagonal of A247495.

Original entry on oeis.org

1, 1, 5, 36, 354, 4425, 67181, 1200745, 24699662, 574795035, 14930563042, 428235433978, 13442267711940, 458373150076335, 16872717817840509, 666835739823870900, 28163028244810505622, 1265837029802096365275, 60330098878933736719190, 3039079334694016053006276
Offset: 0

Views

Author

Peter Luschny, Dec 12 2014

Keywords

Comments

Also coefficient of x^n in the expansion of 1/(n+1) * (1 + n*x + x^2)^(n+1). - Seiichi Manyama, May 06 2019

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[n^n*HypergeometricPFQ[{1/2-n/2, -n/2}, {2}, 4/n^2],{n,1,20}]}] (* Vaclav Kotesovec, Dec 12 2014 *)
  • PARI
    {a(n) = sum(k=0, n\2, n^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1))} \\ Seiichi Manyama, May 05 2019
    
  • PARI
    {a(n) = polcoef((1+n*x+x^2)^(n+1)/(n+1), n)} \\ Seiichi Manyama, May 06 2019
  • Sage
    a = lambda n: 1 if n==0 else n^n*hypergeometric([1/2-n/2, -n/2], [2], 4/n^2).simplify()
    [a(n) for n in range(20)]
    

Formula

a(n) = Sum_{j=0..floor(n/2)} ((j+1)*n^(n-2*j)*n!)/((j+1)!^2*(n-2*j)!).
a(n) ~ BesselI(1,2) * n^n. - Vaclav Kotesovec, Dec 12 2014
From Ilya Gutkovskiy, Sep 21 2017: (Start)
a(n) = [x^n] (1 - n*x - sqrt(1 - 2*n*x + (n^2 - 4)*x^2))/(2*x^2).
a(n) = [x^n] 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. (End)

A247497 Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247495 (the Motzkin polynomials evaluated at nonnegative integers).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 10, 12, 6, 9, 33, 62, 60, 24, 21, 111, 300, 450, 360, 120, 51, 378, 1412, 3000, 3720, 2520, 720, 127, 1303, 6552, 18816, 32760, 34440, 20160, 5040, 323, 4539, 30186, 113820, 264264, 388080, 352800, 181440, 40320
Offset: 0

Views

Author

Peter Luschny, Dec 13 2014

Keywords

Examples

			Triangle starts:
[  1],
[  1,    1],
[  2,    3,    2],
[  4,   10,   12,     6],
[  9,   33,   62,    60,    24],
[ 21,  111,  300,   450,   360,   120],
[ 51,  378, 1412,  3000,  3720,  2520,   720],
[127, 1303, 6552, 18816, 32760, 34440, 20160, 5040].
.
[n=3] -> [4,10,12,6] -> 4/(x-1)+10/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = 2*x*(-x+2*x^2+2)/(x-1)^4; generating function of A247495[n,3] = 0,4,14, 36,...
[n=4] -> [9,33,62,60,24] -> -9/(x-1)-33/(x-1)^2-62/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = -(2-x-3*x^3+17*x^2+9*x^4)/(x-1)^5; generating function of A247495[n,4] = 2,9,42,137,...
		

Crossrefs

Programs

  • Maple
    A247497_row := proc(n) local A, M, p;
    A := (n,k) -> `if`(type(n-k, odd),0,n!/(k!*((n-k)/2)!^2*((n-k)/2+1))):
    M := (k,x) -> add(A(k,j)*x^j,j=0..k): # Motzkin polynomial
    p := expand(sum(x^k*M(n,k),k=0..infinity));
    [seq((-1)^(n+1)*coeff(convert(p,parfrac),(x-1)^(-j)),j=1..n+1)] end:
    seq(print(A247497_row(n)),n=0..7);

Formula

Let M_{n}(x) = sum_{k=0..n} A097610(n,k)*x^k denote the Motzkin polynomials. The T(n,k) are implicitly defined by:
sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*M_n(k).
T(n, 0) = A001006(n) (Motzkin numbers).
T(n, n) = A000142(n) = n!.
T(n, 1) = A058987(n+1) for n>=1.
T(n,n-1)= A001710(n+1) for n>=1.

A306684 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - x + sqrt(1 - 2*x + (1-4*k)*x^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 9, 1, 1, 1, 5, 10, 21, 21, 1, 1, 1, 6, 13, 37, 61, 51, 1, 1, 1, 7, 16, 57, 121, 191, 127, 1, 1, 1, 8, 19, 81, 201, 451, 603, 323, 1, 1, 1, 9, 22, 109, 301, 861, 1639, 1961, 835, 1
Offset: 0

Views

Author

Seiichi Manyama, May 06 2019

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,    1,    1,     1,     1, ...
   1,   1,   1,    1,    1,    1,     1,     1, ...
   1,   2,   3,    4,    5,    6,     7,     8, ...
   1,   4,   7,   10,   13,   16,    19,    22, ...
   1,   9,  21,   37,   57,   81,   109,   141, ...
   1,  21,  61,  121,  201,  301,   421,   561, ...
   1,  51, 191,  451,  861, 1451,  2251,  3291, ...
   1, 127, 603, 1639, 3445, 6231, 10207, 15583, ...
		

Crossrefs

Main diagonal gives A307906.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of 1/(n+1) * (1 + x + k*x^2)^(n+1).
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j)/(j+1) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * A000108(j).
(n+2) * A(n,k) = (2*n+1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).

A294573 a(n) = n! * [x^n] exp((n+1)*x)*BesselI(1,2*x)/x.

Original entry on oeis.org

1, 2, 10, 76, 777, 9996, 155139, 2821400, 58856963, 1385621260, 36343079188, 1051024082472, 33226817252215, 1140040324751160, 42193259673938754, 1675570154136359472, 71069261432474378715, 3206616936773061141900, 153358034674756782660342, 7749560706936442485607560
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 02 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A001006.

Crossrefs

Diagonal of A247495.

Programs

  • Maple
    S:= series(exp((n+1)*x)*BesselI(1,2*x)/x, x, 102):
    seq(simplify(n!*coeff(S,x,n)),n=0..100); # Robert Israel, Nov 03 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[(n + 1) x] BesselI[1, 2 x]/x, {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[(1 - (n + 1) x - Sqrt[(1 - (n - 1) x) (1 - (n + 3) x)])/(2 x^2), {x, 0, n}], {n, 0, 19}]
    Table[(n + 1)^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {2}, 4/(n + 1)^2], {n, 0, 19}]

Formula

a(n) = [x^n] (1 - (n + 1)*x - sqrt((1 - (n - 1)*x)*(1 - (n + 3)*x)))/(2*x^2).
a(n) ~ exp(1) * BesselI(1,2) * n^n. - Vaclav Kotesovec, Nov 13 2017
Showing 1-4 of 4 results.