A201638 Triangle read by rows, T(n,k) for 0<=k<=n, generalizes the colored Motzkin paths of A107264.
1, 3, 1, 12, 6, 1, 54, 33, 9, 1, 261, 180, 63, 12, 1, 1323, 990, 405, 102, 15, 1, 6939, 5508, 2511, 756, 150, 18, 1, 37341, 30996, 15309, 5229, 1260, 207, 21, 1, 205011, 176256, 92610, 34776, 9630, 1944, 273, 24, 1, 1143801, 1011609, 558414, 225828, 69498, 16281, 2835, 348, 27, 1
Offset: 0
Examples
[0] [1] [1] [3, 1] [2] [12, 6, 1] [3] [54, 33, 9, 1] [4] [261, 180, 63, 12, 1] [5] [1323, 990, 405, 102, 15, 1] [6] [6939, 5508, 2511, 756, 150, 18, 1] [7] [37341, 30996, 15309, 5229, 1260, 207, 21, 1]
Programs
-
Mathematica
T[0, 0] = 1; T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + 3*T[n - 1, k] + 3*T[n - 1, k + 1]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 29 2019 *)
-
Sage
def A201638_triangle(dim): T = matrix(ZZ,dim,dim) for n in range(dim): T[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): T[n,k] = T[n-1,k-1]+3*T[n-1,k]+3*T[n-1,k+1] return T A201638_triangle(8)
Formula
Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1)+3*T(n-1,k)+3*T(n-1,k+1).
Comments