A120981 Triangle read by rows: T(n,k) is the number of ternary trees with n edges and having k vertices of outdegree 1 (n >= 0, k >= 0).
1, 0, 3, 3, 0, 9, 1, 27, 0, 27, 18, 12, 162, 0, 81, 15, 270, 90, 810, 0, 243, 138, 270, 2430, 540, 3645, 0, 729, 189, 2898, 2835, 17010, 2835, 15309, 0, 2187, 1218, 4536, 34776, 22680, 102060, 13608, 61236, 0, 6561, 2280, 32886, 61236, 312984, 153090, 551124
Offset: 0
Examples
T(2,0)=3 because we have (Q,L,M), (Q,L,R) and (Q,M,R), where Q denotes the root and L (M,R) denotes a left (middle, right) child of Q. Triangle starts: 1; 0, 3; 3, 0, 9; 1, 27, 0, 27; 18, 12, 162, 0, 81; 15, 270, 90, 810, 0, 243;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
Crossrefs
Programs
-
Maple
T:=proc(n,k) if k<=n then (1/(n+1))*binomial(n+1,k)*sum(3^(3*j-n+2*k)*binomial(n+1-k,j)*binomial(j,n-k-2*j),j=0..n+1-k) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := (1/(n+1))*Binomial[n+1, k]*Sum[3^(2k - n + 3j)*Binomial[n + 1 - k, j]*Binomial[j, n - k - 2j], {j, 0, n - k + 1}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2018 *)
-
PARI
T(n,k) = binomial(n+1, k)*sum(j=0, n+1-k, 3^(2*k-n+3*j)*binomial(n+1-k, j)*binomial(j, n-k-2*j))/(n+1); \\ Andrew Howroyd, Nov 06 2017
-
Python
from sympy import binomial def T(n, k): return binomial(n + 1, k)*sum([3**(2*k - n + 3*j)*binomial(n + 1 - k, j)*binomial(j, n - k - 2*j) for j in range(n + 2 - k)])//(n + 1) for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Nov 07 2017
Comments