cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025226 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 2. Also a(n) = 3^n*C(n-1), where C = A000108 (Catalan numbers).

Original entry on oeis.org

3, 9, 54, 405, 3402, 30618, 288684, 2814669, 28146690, 287096238, 2975361012, 31241290626, 331638315876, 3553267670100, 38375290837080, 417331287853245, 4566095267100210
Offset: 1

Views

Author

Keywords

Comments

Total number of rows in all Kleene truth tables for bracketed implication with n distinct variables. See Yildiz link. - Michel Marcus, Oct 21 2020

Examples

			a(3) = 3^3*C(2) = 27*2 = 54.
		

Crossrefs

Programs

  • Magma
    [3^n*Catalan(n-1): n in [1..30]]; // G. C. Greubel, May 20 2022
    
  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-12x])/2,{x,0,20}],x]]  (* Harvey P. Dale, Mar 09 2011 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-12*x+x*O(x^n)))/2,n)
    
  • SageMath
    [3^n*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, May 20 2022

Formula

a(n) = Sum_{j=1..n-1} a(j)*a(n-j), with a(1) = 3.
a(n) = 3^n * A000108(n-1).
G.f.: (1-sqrt(1-12*x))/2. - Michael Somos, Jun 08 2000
Given g.f. C(x) and given A(x)= g.f. of A100239, then B(x) = A(x) - (1+2*x) satisfies B(x) = x - C(x*B(x)). - Michael Somos, Sep 07 2005
G.f.: (1 - U(0))/x where U(k)= 1 - 3*x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 30 2012
D-finite with recurrence: n*a(n) +6*(3-2*n)*a(n-1) = 0. - R. J. Mathar, Nov 12 2012
a(n) = 3^n/(4*n-2)*binomial(2*n,n). - Vaclav Kotesovec, Oct 11 2013

A156016 Expansion of (1-x-sqrt(1-6x-3x^2))/(2x).

Original entry on oeis.org

1, 3, 9, 36, 162, 783, 3969, 20817, 112023, 615033, 3431403, 19398690, 110880900, 639730305, 3720657807, 21790419444, 128398625658, 760668489729, 4528069760691, 27070491820644, 162464919528222, 978463778897637
Offset: 0

Views

Author

Paul Barry, Feb 01 2009

Keywords

Comments

Transform of Catalan numbers by Riordan array ((1+x)/(1-x), x(1+x)/(1-x)^2).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-6x-3x^2])/(2x),{x,0,30}],x] (* Harvey P. Dale, Jul 27 2014 *)

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k+1} C(k+1,j)*C(n+k-j,n-k-j)*A000108(k).
a(n+1) = 3*A107264(n-1). - Philippe Deléham, Feb 04 2009
D-finite with recurrence: (n+1)*a(n) + 3*(-2*n+1)*a(n-1) + 3*(-n+2)*a(n-2) = 0. - R. J. Mathar, Dec 03 2014
G.f. A(x) satisfies: A(x) = 1 + x * (1 + A(x) + A(x)^2). - Ilya Gutkovskiy, Jul 01 2020
Showing 1-2 of 2 results.