cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107264 Expansion of (1 - 3*x - sqrt((1-3*x)^2 - 4*3*x^2))/(2*3*x^2).

Original entry on oeis.org

1, 3, 12, 54, 261, 1323, 6939, 37341, 205011, 1143801, 6466230, 36960300, 213243435, 1240219269, 7263473148, 42799541886, 253556163243, 1509356586897, 9023497273548, 54154973176074, 326154592965879, 1970575690572297
Offset: 0

Views

Author

Paul Barry, May 15 2005

Keywords

Comments

Series reversion of x/(1+3x+3x^2). Transform of 3^n under the matrix A107131. A row of A107267.
Counts colored Motzkin paths, where H(1,0) and U(1,1) each have 3 colors and D(1,-1) one color. - Paul Barry, May 18 2005
Number of Motzkin paths of length n in which both the "up" and the "level" steps come in three colors. - Paul Barry, May 18 2005
Third binomial transform of 1,0,3,0,18,0,... or 3^n*C(n) (A005159) with interpolated zeros. - Paul Barry, May 24 2005
As a continued fraction, the g.f. is 1/(1-3*x-3*x^2/(1-3*x-3*x^2/(1-3*x-3*x^2/(1-3*x-3*x^2/(.... - Paul Barry, Dec 02 2008

Programs

  • Mathematica
    CoefficientList[Series[(1-3*x-Sqrt[1-6*x-3*x^2])/(6*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

G.f.: (1 - 3x - sqrt(1-6x-3x^2))/(6x^2);
a(n) = Sum_{k=0..n} (1/(k+1))*C(k+1, n-k+1)*C(n, k)3^k.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*C(k)*3^(n-k). - Paul Barry, May 18 2005
E.g.f.: exp(3x)*Bessel_I(1, sqrt(3)*2*x)/(sqrt(3)*x). - Paul Barry, May 24 2005
a(n) = (1/Pi)*Integral_{x=3-2*sqrt(3)..3+2*sqrt(3)} x^n*sqrt(-x^2 + 6*x + 3)/6. - Paul Barry, Sep 16 2006
a(n) = A156016(n+1)/3. - Philippe Deléham, Feb 04 2009
D-finite with recurrence: (n+2)*a(n) = 3*(2*n+1)*a(n-1) + 3*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ (5+3*sqrt(3))*(3+2*sqrt(3))^n/(2*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f.: Let F(x) be the g.f. of A348189 with offset 1, then F(x) = x + 2*x^2*F(x)^2*A(x*F(x)). - Alexander Burstein, Feb 14 2022

A260774 Certain directed lattice paths.

Original entry on oeis.org

1, 6, 33, 189, 1107, 6588, 39663, 240894, 1473147, 9058554, 55954395, 346934745, 2157989445, 13459891500, 84152389833, 527224251861, 3309194474451, 20804569738218, 130987600581699, 825796890644895, 5212349717906889, 32935490120006604, 208316726580941037
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
          `if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
          `if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 21 2021
  • Mathematica
    b[x_, y_] := b[x, y] = If[{x, y} == {0, 0}, 1,
         If[x > 0, Sum[b[x - 1, y + j], {j, -1, 1}], 0] +
         If[y > 0, b[x, y - 1], 0] + If[y < 0, b[x, y + 1], 0]];
    a[n_] := b[n, 1];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)

Formula

See Dziemianczuk (2014) Equation (33a) with m=1.
From Vaclav Kotesovec, Jul 15 2022: (Start)
Recurrence: (n+1)*(4*n - 3)*a(n) = 6*(4*n^2 - n - 1)*a(n-1) + 3*(n-1)*(4*n + 1)*a(n-2).
a(n) ~ (3 + 2*sqrt(3))^(n+1) / sqrt(6*Pi*n). (End)

Extensions

More terms from Lars Blomberg, Aug 01 2015

A260772 Certain directed lattice paths.

Original entry on oeis.org

1, 3, 10, 41, 190, 946, 4940, 26693, 147990, 837102, 4811860, 28027210, 165057100, 981177060, 5879570200, 35478788269, 215398416870, 1314794380374, 8064119033220, 49673222082782, 307163049317540, 1906066361809148, 11865666767361960, 74081851132379426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Programs

  • Maple
    # A260772 satisfies a 4th-order recurrence that can be reduced
    # to a 2nd-order recurrence given in this program t:
    t := proc(n) options remember;
    if n <= 1 then
        [-1/2, 0, 1, 4][2*n+2]
      else
        (16*(n-2)*(2*n-3)*(5*n-2)*t(n-2) + (440*n^3-1056*n^2+724*n-144)*t(n-1))
           /( n*(2*n+1)*(5*n-7) )
      fi
    end:
    A260772 := proc(n)
    t(n/2) + ( (2-2*n)*t((n-1)/2)+(n+2)*t((n+1)/2) ) / (1+5*n)
    end:
    seq(A260772(i),i=0..100);
    # Mark van Hoeij, Jul 14 2022
  • Maxima
    a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j,n-4*j+1),j,0,(n+1)/4)/n; /* Vladimir Kruchinin, Apr 04 2019 */
    
  • PARI
    a(n) = if (n==0, 1, sum(j=0, (n+1)/4, (-1)^j*binomial(n,j)*binomial(3*n-4*j, n-4*j+1))/n); \\ Michel Marcus, Apr 05 2019

Formula

G.f.: P1(x) = (2*(1-x)/3)/x - ((2*sqrt(1-5*x-2*x^2)/3)/x)*sin((Pi/6 + arccos(((20*x^3-6*x^2+15*x-2)/2)/(1-5*x-2*x^2)^(3/2))/3)). - See Dziemianczuk (2014), Proposition 11.
a(n) = (1/n)*Sum_{j=0..(n+1)/4} (-1)^j*C(n,j)*C(3*n-4*j,n-4*j+1), a(0)=1. - Vladimir Kruchinin, Apr 04 2019
n*(n+1)*(25*n^2-70*n+21)*a(n) - 30*(7*n-15)*n*a(n-1) + (-1100*n^4+5280*n^3-6424*n^2-1188*n+3816)*a(n-2) + 120*(n+2)*(n-3)*a(n-3) - 16*(n-3)*(n-4)*(25*n^2-20*n-24)*a(n-4) = 0. - Mark van Hoeij, Jul 14 2022
a(n) ~ 2^(n - 1/2) * phi^((10*n - 1)/4) / (sqrt(Pi) * 5^(1/4) * sqrt(phi^(3/2) - 2) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 15 2022

Extensions

More terms from Lars Blomberg, Aug 01 2015

A371657 G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x) + A(x)^2).

Original entry on oeis.org

1, 3, 27, 333, 4752, 73764, 1209492, 20610693, 361403937, 6478386561, 118181952369, 2186908154748, 40949739595242, 774474351098031, 14772979729013247, 283878381945510621, 5490264493926636912, 106786725176131118523, 2087502569999563971843
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 3^(n-k)*binomial(n, k)*binomial(3*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 3^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0.
Showing 1-4 of 4 results.