cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260772 Certain directed lattice paths.

Original entry on oeis.org

1, 3, 10, 41, 190, 946, 4940, 26693, 147990, 837102, 4811860, 28027210, 165057100, 981177060, 5879570200, 35478788269, 215398416870, 1314794380374, 8064119033220, 49673222082782, 307163049317540, 1906066361809148, 11865666767361960, 74081851132379426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Programs

  • Maple
    # A260772 satisfies a 4th-order recurrence that can be reduced
    # to a 2nd-order recurrence given in this program t:
    t := proc(n) options remember;
    if n <= 1 then
        [-1/2, 0, 1, 4][2*n+2]
      else
        (16*(n-2)*(2*n-3)*(5*n-2)*t(n-2) + (440*n^3-1056*n^2+724*n-144)*t(n-1))
           /( n*(2*n+1)*(5*n-7) )
      fi
    end:
    A260772 := proc(n)
    t(n/2) + ( (2-2*n)*t((n-1)/2)+(n+2)*t((n+1)/2) ) / (1+5*n)
    end:
    seq(A260772(i),i=0..100);
    # Mark van Hoeij, Jul 14 2022
  • Maxima
    a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j,n-4*j+1),j,0,(n+1)/4)/n; /* Vladimir Kruchinin, Apr 04 2019 */
    
  • PARI
    a(n) = if (n==0, 1, sum(j=0, (n+1)/4, (-1)^j*binomial(n,j)*binomial(3*n-4*j, n-4*j+1))/n); \\ Michel Marcus, Apr 05 2019

Formula

G.f.: P1(x) = (2*(1-x)/3)/x - ((2*sqrt(1-5*x-2*x^2)/3)/x)*sin((Pi/6 + arccos(((20*x^3-6*x^2+15*x-2)/2)/(1-5*x-2*x^2)^(3/2))/3)). - See Dziemianczuk (2014), Proposition 11.
a(n) = (1/n)*Sum_{j=0..(n+1)/4} (-1)^j*C(n,j)*C(3*n-4*j,n-4*j+1), a(0)=1. - Vladimir Kruchinin, Apr 04 2019
n*(n+1)*(25*n^2-70*n+21)*a(n) - 30*(7*n-15)*n*a(n-1) + (-1100*n^4+5280*n^3-6424*n^2-1188*n+3816)*a(n-2) + 120*(n+2)*(n-3)*a(n-3) - 16*(n-3)*(n-4)*(25*n^2-20*n-24)*a(n-4) = 0. - Mark van Hoeij, Jul 14 2022
a(n) ~ 2^(n - 1/2) * phi^((10*n - 1)/4) / (sqrt(Pi) * 5^(1/4) * sqrt(phi^(3/2) - 2) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 15 2022

Extensions

More terms from Lars Blomberg, Aug 01 2015

A260775 Certain directed lattice paths.

Original entry on oeis.org

1, 4, 28, 264, 2860, 33592, 416024, 5348880, 70715340, 955277400, 13128240840, 182965127280, 2579808294648, 36734706144304, 527495903500720, 7629973004184608, 111068129754096396, 1625888084299461528, 23919596771720906984, 353467725574013402800
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Formula

See Dziemianczuk (2014) Equation (36b) with N=2.
a(n) = 2 * A000108(2*n) for n > 0. [Agrees with the reference, found using OEIS explorer.] - Andrey Zabolotskiy, May 08 2021

Extensions

More terms from Lars Blomberg, Aug 01 2015
Showing 1-2 of 2 results.