cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A069727 Number of nonisomorphic unrooted Eulerian planar maps with n edges (Eulerian means that all vertices are of even valency; there is an Eulerian cycle).

Original entry on oeis.org

1, 1, 2, 4, 12, 34, 154, 675, 3534, 18985, 108070, 632109, 3807254, 23411290, 146734695, 934382820, 6034524474, 39457153432, 260855420489, 1741645762265, 11732357675908, 79673115468562, 545036528857605, 3753642607424647, 26010818244754788, 181266500331748878
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

By duality, also the number of unrooted (sensed) bipartite maps with n edges. - Andrew Howroyd, Mar 29 2021

Crossrefs

Cf. A000257 (rooted), A069720, A069724, A103939 (with distinguished face), A103940 (with distinguished vertex).

Programs

  • Mathematica
    a[n_] := (1/(2n)) * (3*2^(n-1) * Binomial[2n, n]/((n+1)*(n+2)) + Sum[ EulerPhi[n/k] * d[n/k] * 2^(k-2) * Binomial[2k, k], {k, Most[ Divisors[n]]}]) + q[n]; a[0] = 1; q[n_?EvenQ] := 2^((n-4)/2)*Binomial[ n, n/2]/(n+2); q[n_?OddQ] := 2^((n-1)/2)*Binomial[(n-1), (n-1)/2]/(n+1); d[n_] := 4-Mod[n, 2]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 19 2011, after Valery A. Liskovets *)
  • PARI
    a(n) = {if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Formula

a(n) = (1/(2n))*(3*2^(n-1)*binomial(2n, n)/((n+1)(n+2)) + Sum_{k=1..n-1, k|n} phi(n/k)*d(n/k)*2^(k-2)*binomial(2k, k)) + q(n) where phi is the Euler function A000010, q(n) = 2^((n-4)/2)*binomial(n, n/2)/(n+2) if n is even, q(n) = 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1) if n is odd, d(n)=4, if n is even and d(n)=3 if n is odd. - Valery A. Liskovets, Mar 17 2005
a(n) ~ 3 * 2^(3*n-2) / (sqrt(Pi) * n^(7/2)). - Vaclav Kotesovec, Aug 28 2019

A103939 Number of unrooted Eulerian n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 3, 8, 32, 136, 722, 3924, 22954, 138316, 860364, 5472444, 35503288, 234070648, 1564945158, 10589356592, 72412611194, 499788291616, 3478059566250, 24383023246284, 172074483068320, 1221654305104920, 8720583728414354, 62560709120463028, 450854177292364660
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2n)) (2^n Binomial[2n, n]/(n+1) + Sum[Boole[0Jean-François Alcover, Aug 28 2019 *)
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Formula

For n > 0, a(n) = (1/(2n))*(2^n*binomial(2n, n)/(n+1) + Sum_{0A000010.

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 29 2021
Showing 1-2 of 2 results.