cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A090371 Number of unrooted planar 2-constellations with n digons. Also number of n-edge unrooted planar Eulerian maps with bicolored faces.

Original entry on oeis.org

1, 3, 6, 20, 60, 291, 1310, 6975, 37746, 215602, 1262874, 7611156, 46814132, 293447817, 1868710728, 12068905911, 78913940784, 521709872895, 3483289035186, 23464708686960, 159346213738020, 1090073011199451, 7507285094455566, 52021636161126702
Offset: 1

Views

Author

Valery A. Liskovets, Dec 01 2003

Keywords

Comments

a(n) is also the number of unrooted planar hypermaps with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps). - Valery A. Liskovets, Apr 13 2006

Examples

			The 3 Eulerian maps with 2 edges are the digon and two figure eight graphs ("8") in which both loops are colored, resp., black or white.
		

Crossrefs

Programs

  • Maple
    A090371 := proc(n)
        local s, d;
        if n=0 then
            1 ;
        else
            s := -2^n*binomial(2*n, n);
            for d in numtheory[divisors](n) do
                s := s+ numtheory[phi](n/d)*2^d*binomial(2*d, d)
            od;
            3/(2*n)*(2^n*binomial(2*n, n)/((n+1)*(n+2))+s/2);
        fi;
    end proc:
  • Mathematica
    h0[n_] := 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)); a[n_] := (h0[n] + DivisorSum[n, If[#>1, EulerPhi[#]*Binomial[n/#+2, 2]*h0[n/#], 0]&])/n; Array[a, 30] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
  • PARI
    h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
    a(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2,2)*h0(n/d)))/n; \\ Michel Marcus, Dec 11 2014

Extensions

More terms from Michel Marcus, Dec 11 2014

A069724 Number of nonisomorphic unrooted unicursal planar maps with n edges (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

1, 2, 9, 38, 214, 1253, 7925, 51620, 346307, 2365886, 16421359, 115384738, 819276830, 5868540399, 42357643916, 307753571520, 2249048959624, 16520782751969, 121915128678131, 903391034923548, 6719098772562182
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(#-2) Binomial[2 #, #], 0]&] + If[OddQ[n], 2^((n-3)/2) Binomial[n-1, (n-1)/2], 2^((n-6)/2) Binomial[n, n/2]]; Array[a, 21] (* Jean-François Alcover, Sep 18 2016 *)

Formula

There is an easy formula.
a(n) ~ 8^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 28 2019

A103939 Number of unrooted Eulerian n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 3, 8, 32, 136, 722, 3924, 22954, 138316, 860364, 5472444, 35503288, 234070648, 1564945158, 10589356592, 72412611194, 499788291616, 3478059566250, 24383023246284, 172074483068320, 1221654305104920, 8720583728414354, 62560709120463028, 450854177292364660
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2n)) (2^n Binomial[2n, n]/(n+1) + Sum[Boole[0Jean-François Alcover, Aug 28 2019 *)
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Formula

For n > 0, a(n) = (1/(2n))*(2^n*binomial(2n, n)/(n+1) + Sum_{0A000010.

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 29 2021

A103940 Number of unrooted bipartite n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 2, 5, 18, 72, 368, 1982, 11514, 69270, 430384, 2736894, 17752884, 117039548, 782480424, 5294705752, 36206357114, 249894328848, 1739030128872, 12191512867814, 86037243899240, 610827161152012, 4360291880624504, 31280354620428378, 225427088761560916, 1631398499577667252
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

Comments

Bipartite planar maps are dual to Eulerian planar maps.

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2 n)) (2^(n - 1) Binomial[2 n, n]/(n+1) + Sum[Boole[0 < k < n] EulerPhi[n/k] d[n/k] 2^(k-1) Binomial[2k, k], {k, Divisors[n]}]) + q[n];
    d[n_] := If[EvenQ[n], 2, 1];
    q[n_] := If[EvenQ[n], 0, 2^((n-1)/2) Binomial[n-1, (n-1)/2]/(n+1)];
    Array[a, 25] (* Jean-François Alcover, Aug 30 2019 *)
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Formula

For n > 0, a(n) = (1/(2n))*[2^(n-1)*binomial(2n, n)/(n+1) + Sum_{0A000010, d(n)=2, q(n)=0 if n is even and d(n)=1, q(n)=2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1) if n is odd.

Extensions

More terms from Jean-François Alcover, Aug 30 2019
a(0)=1 prepended by Andrew Howroyd, Mar 29 2021

A069725 Number of nonisomorphic unrooted unicursal planar maps with n edges and two vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

1, 1, 3, 11, 62, 342, 2152, 13768, 91800, 622616, 4301792, 30100448, 213019072, 1521473984, 10954616064, 79420280064, 579300888960, 4248201302400, 31302536066560, 231638727063040
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

There is an easy formula.

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 1;
    a[n_] := With[{m = Floor[(n+1)/2]}, 1/n 2^(n-3) Binomial[2n-2, n-1] + 2^(m-3) Binomial[2m-2, m-1]];
    Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)

A090375 Number of unrooted Eulerian maps with bicolored faces which are self-isomorphic under reversing the colors.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 40, 93, 224, 538, 1344, 3352, 8448, 21573, 54912, 143037, 366080, 968083, 2489344, 6664856, 17199104, 46515759, 120393728, 328382874, 852017152, 2340706462, 6085836800, 16822999572, 43818024960, 121777594508, 317680680960, 887053276477
Offset: 1

Views

Author

Valery A. Liskovets, Dec 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    A069727[n_] := (1/(2n)) (3*2^(n - 1) Binomial[2 n, n]/((n + 1) (n + 2)) + Sum[EulerPhi[n/k] d[n/k] 2^(k - 2) Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
    q[n_?EvenQ] := 2^((n - 4)/2) Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2) Binomial[(n - 1), (n - 1)/2]/(n + 1);
    d[n_] := 4 - Mod[n, 2];
    h0[n_] := 3*2^(n - 1) Binomial[2n, n]/((n + 1)(n + 2));
    A090371[n_] := (h0[n] + DivisorSum[n, If[# > 1, EulerPhi[#]*Binomial[n/# + 2, 2] h0[n/#], 0] &])/n;
    a[n_] := 2 A069727[n] - A090371[n];
    Array[a, 32] (* Jean-François Alcover, Aug 28 2019 *)
  • PARI
    h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
    a090371(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2, 2)*h0(n/d)))/n;
    d(n) = if (n%2, 3, 4);
    q(n) = if (n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1), 2^((n-4)/2)*binomial(n, n/2)/(n+2));
    a069727(n) = if (n==0, 1, q(n) + (3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)) + sumdiv(n, k, (k!=n)*eulerphi(n/k)*d(n/k)*2^(k-2)*binomial(2*k, k)))/(2*n));
    a(n) = 2*a069727(n) - a090371(n); \\ Michel Marcus, Dec 11 2014

Formula

a(n) = 2*A069727(n) - A090371(n).
a(2k+1) = 2^k*Catalan(k) = A052701(k+1).

Extensions

More terms from Michel Marcus, Dec 11 2014

A069730 Number of nonisomorphic unrooted unicursal planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 13, 50, 248, 1407, 8600, 55154, 365292, 2473956, 17053468, 119191992, 842688120, 6015275094, 43292026736, 313788095994, 2288506113056, 16781638172458, 123656774440396, 915123392599456
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Unicursal (in a broad sense) means that no more than two vertices are of odd valency (that is, maps possessing an Eulerian path).

Crossrefs

Programs

  • Mathematica
    A069724[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(# - 2) Binomial[2 #, #], 0] &] + If[OddQ[n], 2^((n - 3)/2) Binomial[n - 1, (n - 1)/2], 2^((n - 6)/2) Binomial[n, n/2]];
    A069727[n_] := (1/(2 n))*(3*2^(n - 1)*Binomial[2 n, n]/((n + 1)*(n + 2)) + Sum[EulerPhi[n/k]*d[n/k]*2^(k - 2)*Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
    q[n_?EvenQ] := 2^((n - 4)/2)*Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2)*Binomial[(n - 1), (n - 1)/2]/(n + 1);
    d[n_] := 4 - Mod[n, 2];
    a[n_] := A069727[n] + A069724[n];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n) = A069727(n) + A069724(n).
Showing 1-7 of 7 results.