cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A118094 Numbers of unrooted hypermaps on the torus with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps).

Original entry on oeis.org

1, 6, 33, 285, 2115, 16533, 126501, 972441, 7451679, 57167260, 438644841, 3369276867, 25905339483, 199408447446, 1536728368389, 11856420991413, 91579955286519, 708146055343668, 5481535740059577, 42473608898628639
Offset: 3

Views

Author

Valery A. Liskovets, Apr 13 2006

Keywords

Crossrefs

Programs

  • Maple
    Phi2 := proc(l)
        local a,k ;
        a := 0 ;
        for k in numtheory[divisors](l) do
            a := a+numtheory[mobius](l/k)*k^2 ;
        end do:
        a ;
    end proc:
    h0 := proc(m)
        if type(m,integer) then
            binomial(2*m,m)*3*2^(m-1)/(m+1)/(m+2) ;
        else
            0;
        end if;
    end proc:
    h1 := proc(n)
        local a;
        a := 0 ;
        if n >= 3 and type(n,integer) then
            a := add(2^k*(4^(n-2-k)-1)*binomial(n+k,k),k=0..n-3) ;
        end if;
        a/3 ;
    end proc:
    A118094 := proc(n)
        binomial(n/2+2,4)*h0(n/2) ;
        %+2*binomial(n/3+2,3)*h0(n/3) ;
        %+6*binomial(n/4+2,3)*h0(n/4) ;
        a := %+12*binomial(n/6+2,3)*h0(n/6) ;
        for l in numtheory[divisors](n) do
            if modp(n,l) = 0 then
                a := a+h1(n/l)*Phi2(l) ;
            end if;
        end do:
        a/n ;
    end proc:
    seq(A118094(n),n=3..14) ; # R. J. Mathar, Dec 17 2014
  • Mathematica
    h0[n_] := If[Denominator[n] == 1, 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)), 0]; h1[n_] := Sum[(4^(n-2-k)-1)*Binomial[n+k, k]*2^k, {k, 0, n-3}]/3; phi2[n_] := Sum[MoebiusMu[n/d]*d^2, {d, Divisors[n]}]; a[n_] := (Binomial[n/2+2, 4]*h0[n/2] +  2*Binomial[n/3+2, 3]*h0[n/3]+6*Binomial[n/4+2, 3]*h0[n/4] + 12*Binomial[n/6+2, 3]*h0[n/6] + Sum[ phi2[d]*h1[n/d], {d, Divisors[n]}])/n; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Dec 18 2014, translated from PARI *)
  • PARI
    h0(n) = if(denominator(n)==1, 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)), 0);
    h1(n) = sum(k=0, n-3, (4^(n-2-k)-1)*binomial(n+k, k)<Michel Marcus, Dec 11 2014 ; corrected by Charles R Greathouse IV, Dec 17 2014

A214819 Number of genus 2 sensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 4, 48, 708, 9807, 119436, 1355400, 14561360, 150429819, 1506841872, 14732613116, 141226638540, 1331912032173, 12390368538412, 113927616087252, 1037080582036632, 9358430685657218, 83804192879934456, 745394788170961932, 6590038606472968276
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    hO[d_, , ] := 0 /; !IntegerQ@d;
    hO[d_, g_, q_] := Multinomial[d+2-2g-Total@q, Sequence@@q] h[g][d];
    h[0][m_] := 3 2^(m-1) Binomial[2m,m] / ((m+1)(m+2));
    h[1][d_] := Sum[2^k (4^(d-2-k)-1) Binomial[d+k,k], {k,0,d-3}] / 3;
    h[2][d_] := Coefficient[-# (# - 1)^5 (#^4 - 6 #^3 + 36 #^2 - 50 # + 51) / (4 (# - 2)^7 (# + 1)^5) &[(1-Sqrt[1-8x])/(4x)+O[x]^(d+1)], x, d];
    a2[d_] := (h[2][d] + 4hO[d/2,1,{2}] + hO[d/2,0,{6}] + 6hO[d/3,0,{0,4}] + 2hO[d/4,0,{2,0,2}] + 12hO[d/5,0,{0,0,0,3}] + 2hO[d/6,0,{2,2}] + 2hO[d/6,0,{0,1,0,0,2}] + 4hO[d/8,0,{1,0,0,0,0,0,2}] + 4hO[d/10,0,{1,0,0,1,0,0,0,0,1}]) / d;
    Table[a2[n], {n, 23}] (* Andrei Zabolotskii, Jun 24 2025, using Mednykh & Nedela's Theorem 8 *)

Extensions

Terms a(13) onwards from Andrei Zabolotskii, Jun 24 2025

A214820 Number of genus 3 sensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 30, 1155, 29910, 601364, 10260804, 156469887, 2195431068, 28897471080, 361514582340, 4339280187364, 50323775391144, 566914469842923, 6229721664499224, 67000302262906866, 707159710965012834, 7341038807584085816, 75093327553430134548
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    hO[d_, , ] := 0 /; !IntegerQ@d;
    hO[d_, g_, q_] := Multinomial[d+2-2g-Total@q, Sequence@@q] h[g][d];
    h[0][m_] := 3 2^(m-1) Binomial[2m, m] / ((m+1)(m+2));
    h[1][d_] := Sum[2^k (4^(d-2-k)-1) Binomial[d+k, k], {k, 0, d-3}] / 3;
    h[2][d_] := Coefficient[-# (# - 1)^5 (#^4 - 6 #^3 + 36 #^2 - 50 # + 51) / (4 (# - 2)^7 (# + 1)^5) &[(1-Sqrt[1-8x])/(4x) + O[x]^(d+1)], x, d];
    h[3][d_] := Coefficient[# (# - 1)^7(5 #^9 - 60 #^8 + 675 #^7 - 2947 #^6 + 10005 #^5 - 20235 #^4 + 28297 #^3 - 23937 #^2 + 11418 # - 1781)/(2 (# - 2)^12(# + 1)^9) &[(1-Sqrt[1-8x])/(4x) + O[x]^(d+1)],x,d];
    a3[d_] := (h[3][d] + 15h[2][d/2] + 4hO[d/2,1,{4}] + hO[d/2,0,{8}] + 18hO[d/3,1,{2}] + 10hO[d/3,0,{5}] + 12hO[d/4,1,{2}] + 2hO[d/4,0,{3,2}] + 8hO[d/4,0,{4}] + 2hO[d/6,0,{1,2,1}] + 2hO[d/6,0,{2,2}] + 30hO[d/7,0,{3}] + 8hO[d/8,0,{1,2}] + 12hO[d/9,0,{1,2}] + 4hO[d/12,0,{1,2}] + 4hO[d/12,0,{1,1,1}] + 6hO[d/14,0,{1,1,1}]) / d;
    Table[a3[n],{n,23}] (* Andrei Zabolotskii, Jun 24 2025, using Mednykh & Nedela's Theorem 9 *)

Extensions

Terms a(13) onwards from Andrei Zabolotskii, Jun 24 2025

A214821 Number of genus 0 unsensed hypermaps with n darts.

Original entry on oeis.org

1, 3, 6, 20, 57, 240, 954, 4566, 22641, 121823, 683307, 4004055
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A214823 Number of genus 2 unsensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 4, 39, 456, 5554, 63378, 698568, 7391499, 75807708
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A215017 Number of genus 3 unsensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 25, 678, 15867, 307880, 5180472, 78573507
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A215018 Number of unsensed hypermaps with n darts and any genus.

Original entry on oeis.org

1, 3, 7, 26, 91, 490, 2785, 20434, 171579, 1671193, 18192737, 218487504
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A380453 Number of dessins d'enfants D(n,g) with n edges of genus g, read by rows.

Original entry on oeis.org

1, 3, 6, 1, 20, 6, 60, 33, 4, 291, 285, 48, 1310, 2115, 708, 30, 6975, 16533, 9807, 1155, 37746, 126501, 119436, 29910, 900, 215602, 972441, 1355400, 601364, 58032, 1262874, 7451679, 14561360, 10260804, 2112300, 54990, 7611156, 57167260, 150429819, 156469887, 57017238, 4764654
Offset: 1

Views

Author

Paawan Jethva, Jun 22 2025

Keywords

Comments

Note that Sum_{g>=0} D(n,g) gives A057005 which is the number of dessins d'enfants with n edges (as one would hope).
We get a new genus every two edges.
n=7 is the first time we have more dessins of genus 1 than genus 0.

Examples

			Triangle D(n,g) begins:
   n\g    0      1      2      3      4      ...
   1      1
   2      3
   3      6      1
   4      20     6
   5      60     33     4
   6      291    285    48
   7      1310   2115   708    30
   8      6975   16533  9807   1155
   9      37746  126501 119436 29910  900
   ...
		

Crossrefs

Cf. A057005.
Columns: A090371, A118094, A214819, A214820, A356694. A321710 is the rooted version.

Extensions

Rows 10-11 from Andrei Zabolotskii, Jun 28 2025

A090375 Number of unrooted Eulerian maps with bicolored faces which are self-isomorphic under reversing the colors.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 40, 93, 224, 538, 1344, 3352, 8448, 21573, 54912, 143037, 366080, 968083, 2489344, 6664856, 17199104, 46515759, 120393728, 328382874, 852017152, 2340706462, 6085836800, 16822999572, 43818024960, 121777594508, 317680680960, 887053276477
Offset: 1

Views

Author

Valery A. Liskovets, Dec 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    A069727[n_] := (1/(2n)) (3*2^(n - 1) Binomial[2 n, n]/((n + 1) (n + 2)) + Sum[EulerPhi[n/k] d[n/k] 2^(k - 2) Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
    q[n_?EvenQ] := 2^((n - 4)/2) Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2) Binomial[(n - 1), (n - 1)/2]/(n + 1);
    d[n_] := 4 - Mod[n, 2];
    h0[n_] := 3*2^(n - 1) Binomial[2n, n]/((n + 1)(n + 2));
    A090371[n_] := (h0[n] + DivisorSum[n, If[# > 1, EulerPhi[#]*Binomial[n/# + 2, 2] h0[n/#], 0] &])/n;
    a[n_] := 2 A069727[n] - A090371[n];
    Array[a, 32] (* Jean-François Alcover, Aug 28 2019 *)
  • PARI
    h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
    a090371(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2, 2)*h0(n/d)))/n;
    d(n) = if (n%2, 3, 4);
    q(n) = if (n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1), 2^((n-4)/2)*binomial(n, n/2)/(n+2));
    a069727(n) = if (n==0, 1, q(n) + (3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)) + sumdiv(n, k, (k!=n)*eulerphi(n/k)*d(n/k)*2^(k-2)*binomial(2*k, k)))/(2*n));
    a(n) = 2*a069727(n) - a090371(n); \\ Michel Marcus, Dec 11 2014

Formula

a(n) = 2*A069727(n) - A090371(n).
a(2k+1) = 2^k*Catalan(k) = A052701(k+1).

Extensions

More terms from Michel Marcus, Dec 11 2014

A214822 Number of genus 1 unsensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 1, 6, 30, 211, 1350, 9636, 69169, 513012, 3843024, 29107494
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Showing 1-10 of 10 results.