cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A214819 Number of genus 2 sensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 4, 48, 708, 9807, 119436, 1355400, 14561360, 150429819, 1506841872, 14732613116, 141226638540, 1331912032173, 12390368538412, 113927616087252, 1037080582036632, 9358430685657218, 83804192879934456, 745394788170961932, 6590038606472968276
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    hO[d_, , ] := 0 /; !IntegerQ@d;
    hO[d_, g_, q_] := Multinomial[d+2-2g-Total@q, Sequence@@q] h[g][d];
    h[0][m_] := 3 2^(m-1) Binomial[2m,m] / ((m+1)(m+2));
    h[1][d_] := Sum[2^k (4^(d-2-k)-1) Binomial[d+k,k], {k,0,d-3}] / 3;
    h[2][d_] := Coefficient[-# (# - 1)^5 (#^4 - 6 #^3 + 36 #^2 - 50 # + 51) / (4 (# - 2)^7 (# + 1)^5) &[(1-Sqrt[1-8x])/(4x)+O[x]^(d+1)], x, d];
    a2[d_] := (h[2][d] + 4hO[d/2,1,{2}] + hO[d/2,0,{6}] + 6hO[d/3,0,{0,4}] + 2hO[d/4,0,{2,0,2}] + 12hO[d/5,0,{0,0,0,3}] + 2hO[d/6,0,{2,2}] + 2hO[d/6,0,{0,1,0,0,2}] + 4hO[d/8,0,{1,0,0,0,0,0,2}] + 4hO[d/10,0,{1,0,0,1,0,0,0,0,1}]) / d;
    Table[a2[n], {n, 23}] (* Andrei Zabolotskii, Jun 24 2025, using Mednykh & Nedela's Theorem 8 *)

Extensions

Terms a(13) onwards from Andrei Zabolotskii, Jun 24 2025

A214821 Number of genus 0 unsensed hypermaps with n darts.

Original entry on oeis.org

1, 3, 6, 20, 57, 240, 954, 4566, 22641, 121823, 683307, 4004055
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A214823 Number of genus 2 unsensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 4, 39, 456, 5554, 63378, 698568, 7391499, 75807708
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A215017 Number of genus 3 unsensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 25, 678, 15867, 307880, 5180472, 78573507
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A215018 Number of unsensed hypermaps with n darts and any genus.

Original entry on oeis.org

1, 3, 7, 26, 91, 490, 2785, 20434, 171579, 1671193, 18192737, 218487504
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A380453 Number of dessins d'enfants D(n,g) with n edges of genus g, read by rows.

Original entry on oeis.org

1, 3, 6, 1, 20, 6, 60, 33, 4, 291, 285, 48, 1310, 2115, 708, 30, 6975, 16533, 9807, 1155, 37746, 126501, 119436, 29910, 900, 215602, 972441, 1355400, 601364, 58032, 1262874, 7451679, 14561360, 10260804, 2112300, 54990, 7611156, 57167260, 150429819, 156469887, 57017238, 4764654
Offset: 1

Views

Author

Paawan Jethva, Jun 22 2025

Keywords

Comments

Note that Sum_{g>=0} D(n,g) gives A057005 which is the number of dessins d'enfants with n edges (as one would hope).
We get a new genus every two edges.
n=7 is the first time we have more dessins of genus 1 than genus 0.

Examples

			Triangle D(n,g) begins:
   n\g    0      1      2      3      4      ...
   1      1
   2      3
   3      6      1
   4      20     6
   5      60     33     4
   6      291    285    48
   7      1310   2115   708    30
   8      6975   16533  9807   1155
   9      37746  126501 119436 29910  900
   ...
		

Crossrefs

Cf. A057005.
Columns: A090371, A118094, A214819, A214820, A356694. A321710 is the rooted version.

Extensions

Rows 10-11 from Andrei Zabolotskii, Jun 28 2025

A214822 Number of genus 1 unsensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 1, 6, 30, 211, 1350, 9636, 69169, 513012, 3843024, 29107494
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Showing 1-7 of 7 results.