A380453 Number of dessins d'enfants D(n,g) with n edges of genus g, read by rows.
1, 3, 6, 1, 20, 6, 60, 33, 4, 291, 285, 48, 1310, 2115, 708, 30, 6975, 16533, 9807, 1155, 37746, 126501, 119436, 29910, 900, 215602, 972441, 1355400, 601364, 58032, 1262874, 7451679, 14561360, 10260804, 2112300, 54990, 7611156, 57167260, 150429819, 156469887, 57017238, 4764654
Offset: 1
Examples
Triangle D(n,g) begins: n\g 0 1 2 3 4 ... 1 1 2 3 3 6 1 4 20 6 5 60 33 4 6 291 285 48 7 1310 2115 708 30 8 6975 16533 9807 1155 9 37746 126501 119436 29910 900 ...
Links
- Paawan Jethva, Exploring the Euler Characteristics of Dessins d’Enfants, 2023, page 15.
- Ján Karabáš, Enumeration of actions of cyclic groups on orientable surfaces.
- A. Mednykh and R. Nedela, Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), tables 2-8 and theorems 8-12. Theorem 12 has typos; the corrected formula can be inferred from Karabáš's tables.
Crossrefs
Extensions
Rows 10-11 from Andrei Zabolotskii, Jun 28 2025
Comments