A069720
a(n) = 2^(n-1)*binomial(2*n-1, n).
Original entry on oeis.org
1, 6, 40, 280, 2016, 14784, 109824, 823680, 6223360, 47297536, 361181184, 2769055744, 21300428800, 164317593600, 1270722723840, 9848101109760, 76467608616960, 594748067020800, 4632774416793600, 36135640450990080, 282202144474398720, 2206307674981662720, 17266755717247795200
Offset: 1
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Harlan J. Brothers, Pascal's Prism: Supplementary Material.
- Valery A. Liskovets and Timothy R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
- Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091.
First superdiagonal of number array
A082137.
-
a069720 n = (a000079 $ n - 1) * (a001700 $ n - 1)
-- Reinhard Zumkeller, Jan 15 2015
-
[2^(n-2)*Binomial(2*n, n): n in [1..25]]; // Vincenzo Librandi, Apr 14 2018
-
Z:=(1-sqrt(1-2*z))*4^(n-1)/sqrt(1-2*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..20); # Zerinvary Lajos, Jan 01 2007
-
Table[2^(n-1) Binomial[2n-1,n],{n,20}] (* Harvey P. Dale, Jan 20 2013 *)
-
a(n) = binomial(2*n-1,n)<<(n-1) \\ Charles R Greathouse IV, Feb 06 2017
-
def A069720(n): return 2^(n-2)*binomial(2*n, n)
print([A069720(n) for n in range(1,31)]) # G. C. Greubel, Jan 18 2025
A003645
a(n) = 2^n * C(n+1), where C(n) = A000108(n) Catalan numbers.
Original entry on oeis.org
1, 4, 20, 112, 672, 4224, 27456, 183040, 1244672, 8599552, 60196864, 426008576, 3042918400, 21909012480, 158840340480, 1158600130560, 8496400957440, 62605059686400, 463277441679360, 3441489566760960, 25654740406763520, 191852841302753280, 1438896309770649600
Offset: 0
- L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160.
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- A. Claesson, S. Kitaev and A. de Mier, An involution on bicubic maps and beta(0,1)-trees, arXiv preprint arXiv:1210.3219 [math.CO], 2012. - From _N. J. A. Sloane_, Jan 01 2013
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, 2017.
- Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 652.
- Anatol N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 034, 56 p. (2016).
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 13.
- V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., Vol. 282, No. 1-3 (2004), pp. 209-221.
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., Vol. 36, No.4 (2006), pp. 364-387.
- Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 11.
- Youngja Park and SeungKyung Park, Enumeration of generalized lattice paths by string types, peaks, and ascents, Discrete Mathematics, Vol. 339, No. 11 (2016), pp. 2652-2659.
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seq., Vol. 9 (2006), Article 06.1.1.
-
[2^n*Binomial(2*n+3, n+1)/(2*n+3) : n in [0..30]]; // Wesley Ivan Hurt, Aug 23 2014
-
A003645:=n->2^n*binomial(2*n+3, n+1)/(2*n+3): seq(A003645(n), n=0..30); # Wesley Ivan Hurt, Aug 23 2014
-
Table[2^n CatalanNumber[n+1],{n,0,20}] (* Harvey P. Dale, May 07 2013 *)
-
a(n)=if(n<0,0,2^n*(2*n+2)!/(n+1)!/(n+2)!)
A069727
Number of nonisomorphic unrooted Eulerian planar maps with n edges (Eulerian means that all vertices are of even valency; there is an Eulerian cycle).
Original entry on oeis.org
1, 1, 2, 4, 12, 34, 154, 675, 3534, 18985, 108070, 632109, 3807254, 23411290, 146734695, 934382820, 6034524474, 39457153432, 260855420489, 1741645762265, 11732357675908, 79673115468562, 545036528857605, 3753642607424647, 26010818244754788, 181266500331748878
Offset: 0
-
a[n_] := (1/(2n)) * (3*2^(n-1) * Binomial[2n, n]/((n+1)*(n+2)) + Sum[ EulerPhi[n/k] * d[n/k] * 2^(k-2) * Binomial[2k, k], {k, Most[ Divisors[n]]}]) + q[n]; a[0] = 1; q[n_?EvenQ] := 2^((n-4)/2)*Binomial[ n, n/2]/(n+2); q[n_?OddQ] := 2^((n-1)/2)*Binomial[(n-1), (n-1)/2]/(n+1); d[n_] := 4-Mod[n, 2]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 19 2011, after Valery A. Liskovets *)
-
a(n) = {if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021
A069731
Number of unicursal planar maps with n edges rooted at a vertex of odd valency (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
Original entry on oeis.org
1, 5, 28, 168, 1056, 6864, 45760, 311168, 2149888, 15049216, 106502144, 760729600, 5477253120, 39710085120, 289650032640, 2124100239360, 15651264921600, 115819360419840, 860372391690240
Offset: 1
-
Z:=-(1-4*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=3..24); # Zerinvary Lajos, Jan 01 2007
-
Table[2^(n-2) CatalanNumber[n+1], {n, 1, 19}] (* Jean-François Alcover, Aug 28 2019 *)
A069732
Number of nonisomorphic unrooted unicursal planar maps with n edges and no vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
Original entry on oeis.org
0, 0, 2, 7, 40, 239, 1549, 10396, 71467, 498598, 3520015, 25087426, 180249182, 1304148015, 9494015372, 69492950976, 511147940104, 3776180492129, 28007532925171, 208474866181148
Offset: 1
-
A003645[n_] := 2^n CatalanNumber[n + 1];
A069724[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(# - 2) Binomial[2 #, #], 0] &] + If[OddQ[n], 2^((n - 3)/2) Binomial[n - 1, (n - 1)/2], 2^((n - 6)/2) Binomial[n, n/2]];
A069725[n_] := If[n <= 2, 1, With[{m = Floor[(n + 1)/2]}, 1/n 2^(n - 3) Binomial[2 n - 2, n - 1] + 2^(m - 3) Binomial[2 m - 2, m - 1]]];
a[n_] := If[n == 1, 0, A069724[n] - A003645[n - 2] - A069725[n]];
Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)
A069730
Number of nonisomorphic unrooted unicursal planar maps with n edges.
Original entry on oeis.org
1, 2, 4, 13, 50, 248, 1407, 8600, 55154, 365292, 2473956, 17053468, 119191992, 842688120, 6015275094, 43292026736, 313788095994, 2288506113056, 16781638172458, 123656774440396, 915123392599456
Offset: 0
-
A069724[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(# - 2) Binomial[2 #, #], 0] &] + If[OddQ[n], 2^((n - 3)/2) Binomial[n - 1, (n - 1)/2], 2^((n - 6)/2) Binomial[n, n/2]];
A069727[n_] := (1/(2 n))*(3*2^(n - 1)*Binomial[2 n, n]/((n + 1)*(n + 2)) + Sum[EulerPhi[n/k]*d[n/k]*2^(k - 2)*Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
q[n_?EvenQ] := 2^((n - 4)/2)*Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2)*Binomial[(n - 1), (n - 1)/2]/(n + 1);
d[n_] := 4 - Mod[n, 2];
a[n_] := A069727[n] + A069724[n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 28 2019 *)
Showing 1-6 of 6 results.
Comments