cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A069723 a(n) = 2^(n-1)*binomial(2*n-3, n-1).

Original entry on oeis.org

1, 2, 12, 80, 560, 4032, 29568, 219648, 1647360, 12446720, 94595072, 722362368, 5538111488, 42600857600, 328635187200, 2541445447680, 19696202219520, 152935217233920, 1189496134041600, 9265548833587200, 72271280901980160, 564404288948797440, 4412615349963325440
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Number of rooted unicursal planar maps with n edges and two vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Crossrefs

Main diagonal of array A082137.

Programs

  • Maple
    Z:=(1-sqrt(1-z))*8^n/sqrt(1-z)/2: Zser:=series(Z, z=0, 33): seq(coeff(Zser, z, n), n=0..20); # Zerinvary Lajos, Jan 16 2007
  • Mathematica
    Table[2^(n - 1) * Binomial[2*n - 3, n - 1], {n, 1,50}] (* G. C. Greubel, Jan 15 2017 *)
  • Sage
    # Assuming offset 0:
    A069723  = lambda n: (rising_factorial(n, n)/factorial(n)) << n
    [A069723(n) for n in (0..20)] # Peter Luschny, Nov 30 2014

Formula

a(n) = A069722(n)/2, n>1.
G.f.: 4*x/(sqrt(1-8*x) * (1-sqrt(1-8*x))). - Paul Barry, Sep 06 2004
With offset 0: a(n) = (0^n + 2^n*binomial(2n, n))/2. - Paul Barry, Sep 24 2004
D-finite with recurrence (-n+1)*a(n) + 4*(2*n-3)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
With offset 0: a(n) = 2^n*rf(n,n)/n! = 2^n*A088218(n), where rf denotes the rising factorial. - Peter Luschny, Nov 30 2014
a(n) = Sum_{k=0..n} binomial(n+k-1,k)*binomial(2*n-1, n-k). - Vladimir Kruchinin, Nov 11 2016
a(n) ~ 2^(3*n-4)/sqrt(Pi*n). - Ilya Gutkovskiy, Nov 11 2016
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=1} 1/a(n) = 9/7 + 16*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/9 - 8*log(2)/27. (End)

A082137 Square array of transforms of binomial coefficients, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 8, 1, 5, 20, 40, 40, 16, 1, 6, 30, 80, 120, 96, 32, 1, 7, 42, 140, 280, 336, 224, 64, 1, 8, 56, 224, 560, 896, 896, 512, 128, 1, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 1, 10, 90, 480, 1680, 4032, 6720, 7680, 5760, 2560, 512
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Comments

Rows are associated with the expansions of (x^k/k!)exp(x)cosh(x) (leading zeros dropped). Rows include A011782, A057711, A080929, A082138, A080951, A082139, A082140, A082141. Columns are of the form 2^(k-1)C(n+k, k). Diagonals include A069723, A082143, A082144, A082145, A069720.
T(n, k) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha)= |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
Read as a triangle this is A119468 with rows reversed. A119468 has e.g.f. exp(z*x)/(1-tanh(x)). - Peter Luschny, Aug 01 2012
Read as a triangle this is a subtriangle of A198793. - Philippe Deléham, Nov 10 2013

Examples

			Rows begin
  1 1  2   4   8 ...
  1 2  6  16  40 ...
  1 3 12  40 120 ...
  1 4 20  80 280 ...
  1 5 30 140 560 ...
Read as a triangle, this begins:
  1
  1, 1
  1, 2,  2
  1, 3,  6,  4
  1, 4, 12, 16,   8
  1, 5, 20, 40,  40, 16
  1, 6, 30, 80, 120, 96, 32
  ... - _Philippe Deléham_, Nov 10 2013
		

Crossrefs

Programs

Formula

Square array defined by T(n, k)=(2^(n-1)+0^n/2)C(n + k, n)= Sum{k=0..n, C(n+k, k+j)C(k+j, k)(1+(-1)^j)/2 }.
As an infinite lower triangular matrix, equals A007318 * A134309. - Gary W. Adamson, Oct 19 2007
O.g.f. for array read as a triangle: (1-x*(1+t))/((1-x)*(1-x*(1+2*t))) = 1 + x*(1+t) + x^2*(1+2*t+2*t^2) + x^3*(1+3*t+6*t^2+4*t^3) + .... - Peter Bala, Apr 26 2012
For array read as a triangle: T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) -2*T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 10 2013

A069727 Number of nonisomorphic unrooted Eulerian planar maps with n edges (Eulerian means that all vertices are of even valency; there is an Eulerian cycle).

Original entry on oeis.org

1, 1, 2, 4, 12, 34, 154, 675, 3534, 18985, 108070, 632109, 3807254, 23411290, 146734695, 934382820, 6034524474, 39457153432, 260855420489, 1741645762265, 11732357675908, 79673115468562, 545036528857605, 3753642607424647, 26010818244754788, 181266500331748878
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

By duality, also the number of unrooted (sensed) bipartite maps with n edges. - Andrew Howroyd, Mar 29 2021

Crossrefs

Cf. A000257 (rooted), A069720, A069724, A103939 (with distinguished face), A103940 (with distinguished vertex).

Programs

  • Mathematica
    a[n_] := (1/(2n)) * (3*2^(n-1) * Binomial[2n, n]/((n+1)*(n+2)) + Sum[ EulerPhi[n/k] * d[n/k] * 2^(k-2) * Binomial[2k, k], {k, Most[ Divisors[n]]}]) + q[n]; a[0] = 1; q[n_?EvenQ] := 2^((n-4)/2)*Binomial[ n, n/2]/(n+2); q[n_?OddQ] := 2^((n-1)/2)*Binomial[(n-1), (n-1)/2]/(n+1); d[n_] := 4-Mod[n, 2]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 19 2011, after Valery A. Liskovets *)
  • PARI
    a(n) = {if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Formula

a(n) = (1/(2n))*(3*2^(n-1)*binomial(2n, n)/((n+1)(n+2)) + Sum_{k=1..n-1, k|n} phi(n/k)*d(n/k)*2^(k-2)*binomial(2k, k)) + q(n) where phi is the Euler function A000010, q(n) = 2^((n-4)/2)*binomial(n, n/2)/(n+2) if n is even, q(n) = 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1) if n is odd, d(n)=4, if n is even and d(n)=3 if n is odd. - Valery A. Liskovets, Mar 17 2005
a(n) ~ 3 * 2^(3*n-2) / (sqrt(Pi) * n^(7/2)). - Vaclav Kotesovec, Aug 28 2019

A183772 T(n,k) = 1/32 the number of (n+1) X (k+1) binary arrays with equal numbers of 2 X 2 subblocks with sum mod two being 0 and 1.

Original entry on oeis.org

0, 1, 1, 0, 6, 0, 12, 40, 40, 12, 0, 280, 0, 280, 0, 160, 2016, 7392, 7392, 2016, 160, 0, 14784, 0, 205920, 0, 14784, 0, 2240, 109824, 1555840, 5912192, 5912192, 1555840, 109824, 2240, 0, 823680, 0, 173065984, 0, 173065984, 0, 823680, 0, 32256, 6223360
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Table starts
.....0........1...........0..............12..................0
.....1........6..........40.............280...............2016
.....0.......40...........0............7392..................0
....12......280........7392..........205920............5912192
.....0.....2016...........0.........5912192..................0
...160....14784.....1555840.......173065984........19855042560
.....0...109824...........0......5134924800..................0
..2240...823680...346131968....153876579840.....70577422755840
.....0..6223360...........0...4646469273600..................0
.32256.47297536.79420170240.141154845511680.258888921984516096

Examples

			Some solutions for 4 X 3:
..0..1..0....1..1..0....1..0..0....0..1..1....1..1..1....0..0..0....0..0..1
..0..1..1....0..1..0....0..1..0....1..0..1....0..0..0....1..0..0....1..1..1
..0..1..1....1..1..0....1..0..0....1..0..0....1..0..1....1..0..1....0..0..1
..1..1..0....1..1..1....0..1..0....1..1..1....0..1..1....0..1..1....1..0..1
		

Crossrefs

Column 1 is A098400(n/2-1).
Column 2 is A069720.

A069724 Number of nonisomorphic unrooted unicursal planar maps with n edges (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

1, 2, 9, 38, 214, 1253, 7925, 51620, 346307, 2365886, 16421359, 115384738, 819276830, 5868540399, 42357643916, 307753571520, 2249048959624, 16520782751969, 121915128678131, 903391034923548, 6719098772562182
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(#-2) Binomial[2 #, #], 0]&] + If[OddQ[n], 2^((n-3)/2) Binomial[n-1, (n-1)/2], 2^((n-6)/2) Binomial[n, n/2]]; Array[a, 21] (* Jean-François Alcover, Sep 18 2016 *)

Formula

There is an easy formula.
a(n) ~ 8^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 28 2019

A154690 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 18 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A007318(n, k). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A007318(n,k).
(p, q) = (2, 2) : 2*A038208(n,k).
(p, q) = (3, 2) : A154692(n,k).
(p, q) = (3, 3) : 2*A038221(n,k). (End)

Examples

			Triangle begins as:
     2;
     3,    3;
     5,    8,     5;
     9,   18,    18,     9;
    17,   40,    48,    40,    17;
    33,   90,   120,   120,    90,    33;
    65,  204,   300,   320,   300,   204,    65;
   129,  462,   756,   840,   840,   756,   462,   129;
   257, 1040,  1904,  2240,  2240,  2240,  1904,  1040,   257;
   513, 2322,  4752,  6048,  6048,  6048,  6048,  4752,  2322,  513;
  1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
		

Crossrefs

Cf. A215149.
Sums include: A008776 (row), A010673 (alternating sign row).
Columns k: A000051 (k=0).
Main diagonal: A059304.

Programs

  • Magma
    A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
    [A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
  • Mathematica
    T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
    Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
    print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A007318(n, k).
Sum_{k=0..n} T(n, k) = A008776(n) = A025192(n+1).
From G. C. Greubel, Jan 18 2025: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(n, 1) = n + A215149(n), n >= 1.
T(2*n-1, n) = 3*A069720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000129(n+1) + A001045(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = n+1 + A107920(n+1). (End)

A082143 First subdiagonal of number array A082137.

Original entry on oeis.org

1, 3, 20, 140, 1008, 7392, 54912, 411840, 3111680, 23648768, 180590592, 1384527872, 10650214400, 82158796800, 635361361920, 4924050554880, 38233804308480, 297374033510400, 2316387208396800, 18067820225495040, 141101072237199360, 1103153837490831360
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Examples

			a(0)=(2^(-1)+(0^0)/2)C(1,0)=2*(1/2)=1 (use 0^0=1).
		

Crossrefs

Programs

  • Haskell
    a082143 0 = 1
    a082143 n = (a000079 $ n - 1) * (a001700 n)
    -- Reinhard Zumkeller, Jan 15 2015
    
  • Magma
    [(2^(n-1) + 0^n/2)*Binomial(2*n+1,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Join[{1}, Table[2^(n-1)* Binomial[2*n+1,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+1,n), ", ")) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = (2^(n-1) + 0^n/2)*C(2n+1, n).
Conjecture: (n+1)*a(n) +4*(-2*n-1)*a(n-1)=0. - R. J. Mathar, Oct 19 2014
From Reinhard Zumkeller, Jan 15 2015: (Start)
a(n) = A000079(n-1) * A001700(n), for n > 0.
a(n) = A069720(n+1)/2. (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 64*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)) + 1/7.
Sum_{n>=0} (-1)^n/a(n) = 32*log(2)/27 - 1/9. (End)

A098400 a(n) = 4^n*binomial(2*n+1, n).

Original entry on oeis.org

1, 12, 160, 2240, 32256, 473088, 7028736, 105431040, 1593180160, 24216338432, 369849532416, 5671026163712, 87246556364800, 1346089726771200, 20819521107394560, 322702577164615680, 5011381198321090560, 77954818640550297600, 1214454016715941478400
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Crossrefs

Programs

  • Magma
    [4^n*(2*n+1)*Catalan(n): n in [0..30]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    Table[4^n Binomial[2n+1,n],{n,0,20}] (* Harvey P. Dale, Jan 22 2019 *)
  • PARI
    a(n)=binomial(2*n+1,n)<<(2*n) \\ Charles R Greathouse IV, Oct 23 2023
    
  • SageMath
    [4^n*binomial(2*n+1,n) for n in range(31)] # G. C. Greubel, Dec 27 2023

Formula

G.f.: (1-sqrt(1-16*x))/(8*x*sqrt(1-16*x)).
E.g.f.: a(n) = n! * [x^n] exp(8*x)*(BesselI(0, 8*x) + BesselI(1, 8*x)). - Peter Luschny, Aug 25 2012
(n+1)*a(n) - 8*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 26 2012
a(n) = 4^n*(2*n+1)*Hypergeometric2F1([1-n,-n],[2],1). - Peter Luschny, Sep 22 2014
From G. C. Greubel, Dec 27 2023: (Start)
a(n) = 4^n * A001700(n).
a(n) = 4^n * (2*n+1) * A000108(n).
a(n) = (2*n+1) * A151403(n). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 8/15 + 128*arcsin(1/4)/(15*sqrt(15)).
Sum_{n>=0} (-1)^n/a(n) = 8/17 + 128*arcsinh(1/4)/(17*sqrt(17)). (End)

A069722 Number of rooted unicursal planar maps with n edges and exactly one vertex of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

0, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400, 144542561803960320, 1128808577897594880
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Magma
    [0] cat[2^(n-1)*Binomial(2*n-2, n-1): n in [2..20]]; // Vincenzo Librandi, Nov 17 2011
  • Maple
    Z:=(1-sqrt(1-z))*8^n/sqrt(1-z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=0..19); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Join[{0},Table[2^(n-1) Binomial[2n-2,n-1],{n,2,20}]] (* Harvey P. Dale, Nov 16 2011 *)

Formula

a(n) = 2^(n-1)*binomial(2n-2, n-1), n>1.
a(n) = 2*A069723(n), n>1.
G.f. for a(n)^2: 1/AGM(1, (1-64*x)^(1/2)). - Benoit Cloitre, Jan 01 2004
a(n) = A059304(n-1), n>1. [R. J. Mathar, Sep 29 2008]
a(n) ~ 2^(3*n-3)/sqrt(Pi*n). - Vaclav Kotesovec, Sep 28 2019
E.g.f.: x * (exp(4*x) * (BesselI(0,4*x) - BesselI(1,4*x)) - 1). - Ilya Gutkovskiy, Nov 03 2021
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=2} 1/a(n) = 1/7 + 8*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=2} (-1)^n/a(n) = 1/9 + 4*log(2)/27. (End)

A098399 a(n) = 3^n*binomial(2*n+1, n).

Original entry on oeis.org

1, 9, 90, 945, 10206, 112266, 1250964, 14073345, 159497910, 1818276174, 20827527084, 239516561466, 2763652632300, 31979409030900, 370961144758440, 4312423307816865, 50227047938102310, 585982225944526950, 6846739692614999100, 80106854403595489470, 938394580156404305220
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Crossrefs

Programs

  • Magma
    [3^n*Binomial(2*n+1, n): n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Maple
    Z:=(1-sqrt(1-3*z))*4^n/sqrt(1-3*z)/6: Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..18); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Table[3^n Binomial[2n+1,n], {n,0,20}] (* Harvey P. Dale, Mar 28 2012 *)
  • PARI
    a(n)=binomial(2*n+1,n)*3^n \\ Charles R Greathouse IV, Oct 23 2023
    
  • SageMath
    [3^n*binomial(2*n+1, n) for n in range(21)] # G. C. Greubel, Dec 27 2023

Formula

G.f.: (1-sqrt(1-12*x))/(6*x*sqrt(1-12*x)).
E.g.f.: a(n) = n!* [x^n] exp(6*x)*(BesselI(0, 6*x) + BesselI(1, 6*x)). - Peter Luschny, Aug 25 2012
(n+1)*a(n) - 6*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
From G. C. Greubel, Dec 27 2023: (Start)
a(n) = 3^n * (2*n+1)*A000108(n).
a(n) = (2*n+1)*A005159(n).
a(n) = 3^n * A001700(n). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 6/11 + 72*arcsin(1/(2*sqrt(3)))/(11*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 6/13 + 72*arcsinh(1/(2*sqrt(3)))/(13*sqrt(13)). (End)
Showing 1-10 of 25 results. Next