cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A183772 T(n,k) = 1/32 the number of (n+1) X (k+1) binary arrays with equal numbers of 2 X 2 subblocks with sum mod two being 0 and 1.

Original entry on oeis.org

0, 1, 1, 0, 6, 0, 12, 40, 40, 12, 0, 280, 0, 280, 0, 160, 2016, 7392, 7392, 2016, 160, 0, 14784, 0, 205920, 0, 14784, 0, 2240, 109824, 1555840, 5912192, 5912192, 1555840, 109824, 2240, 0, 823680, 0, 173065984, 0, 173065984, 0, 823680, 0, 32256, 6223360
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Table starts
.....0........1...........0..............12..................0
.....1........6..........40.............280...............2016
.....0.......40...........0............7392..................0
....12......280........7392..........205920............5912192
.....0.....2016...........0.........5912192..................0
...160....14784.....1555840.......173065984........19855042560
.....0...109824...........0......5134924800..................0
..2240...823680...346131968....153876579840.....70577422755840
.....0..6223360...........0...4646469273600..................0
.32256.47297536.79420170240.141154845511680.258888921984516096

Examples

			Some solutions for 4 X 3:
..0..1..0....1..1..0....1..0..0....0..1..1....1..1..1....0..0..0....0..0..1
..0..1..1....0..1..0....0..1..0....1..0..1....0..0..0....1..0..0....1..1..1
..0..1..1....1..1..0....1..0..0....1..0..0....1..0..1....1..0..1....0..0..1
..1..1..0....1..1..1....0..1..0....1..1..1....0..1..1....0..1..1....1..0..1
		

Crossrefs

Column 1 is A098400(n/2-1).
Column 2 is A069720.

A098399 a(n) = 3^n*binomial(2*n+1, n).

Original entry on oeis.org

1, 9, 90, 945, 10206, 112266, 1250964, 14073345, 159497910, 1818276174, 20827527084, 239516561466, 2763652632300, 31979409030900, 370961144758440, 4312423307816865, 50227047938102310, 585982225944526950, 6846739692614999100, 80106854403595489470, 938394580156404305220
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Crossrefs

Programs

  • Magma
    [3^n*Binomial(2*n+1, n): n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Maple
    Z:=(1-sqrt(1-3*z))*4^n/sqrt(1-3*z)/6: Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..18); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Table[3^n Binomial[2n+1,n], {n,0,20}] (* Harvey P. Dale, Mar 28 2012 *)
  • PARI
    a(n)=binomial(2*n+1,n)*3^n \\ Charles R Greathouse IV, Oct 23 2023
    
  • SageMath
    [3^n*binomial(2*n+1, n) for n in range(21)] # G. C. Greubel, Dec 27 2023

Formula

G.f.: (1-sqrt(1-12*x))/(6*x*sqrt(1-12*x)).
E.g.f.: a(n) = n!* [x^n] exp(6*x)*(BesselI(0, 6*x) + BesselI(1, 6*x)). - Peter Luschny, Aug 25 2012
(n+1)*a(n) - 6*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
From G. C. Greubel, Dec 27 2023: (Start)
a(n) = 3^n * (2*n+1)*A000108(n).
a(n) = (2*n+1)*A005159(n).
a(n) = 3^n * A001700(n). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 6/11 + 72*arcsin(1/(2*sqrt(3)))/(11*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 6/13 + 72*arcsinh(1/(2*sqrt(3)))/(13*sqrt(13)). (End)

A098402 a(n) = (0^n + 4^n * binomial(2*n,n))/2.

Original entry on oeis.org

1, 4, 48, 640, 8960, 129024, 1892352, 28114944, 421724160, 6372720640, 96865353728, 1479398129664, 22684104654848, 348986225459200, 5384358907084800, 83278084429578240, 1290810308658462720, 20045524793284362240, 311819274562201190400, 4857816066863765913600
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Comments

It seems that a(n) is the number of pairs of binary vectors of length 2*n which are orthogonal. (Define binary vectors here to have components of value +1 or -1. There are no pairs of binary vectors of odd length which are orthogonal.) For example, the a(1) = 4 pairs of binary vectors of length 2 are (-1,-1) and (1,-1), (-1,-1) and (-1,1), (1,-1) and (1,1), (-1,1) and (1,1). Tested up to and including a(8). - R. J. Mathar, Apr 15 2013
Tested up to and including a(210). - R. H. Hardin, May 08 2013

Crossrefs

Programs

  • Magma
    [(0^n + 4^n*(n+1)*Catalan(n))/2: n in [0..40]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    Table[(Boole[n == 0] + 4^n Binomial[2 n, n])/2, {n, 0, 18}] (* or *)
    CoefficientList[Series[8 x/(# (1 - #)) &@ Sqrt[1 - 16 x], {x, 0, 18}], x] (* Michael De Vlieger, Aug 03 2016 *)
  • SageMath
    [(4^n*binomial(2*n,n) + int(n==0))/2 for n in range(41)] # G. C. Greubel, Dec 27 2023

Formula

G.f.: 8*x/( sqrt(1 - 16*x)*(1 - sqrt(1 - 16*x)) ).
a(n+1) = 4*A098400(n).
n*a(n) - 8*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ 16^n/(2*sqrt(Pi*n)). - Ilya Gutkovskiy, Aug 03 2016
a(n) = A055372(2*n,n). - Alois P. Heinz, Jan 21 2020
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 17/15 + 32*arcsin(1/4)/(15*sqrt(15)).
Sum_{n>=0} (-1)^n/a(n) = 15/17 - 32*arcsinh(1/4)/(17*sqrt(17)). (End)

A098401 a(n) = (0^n + 3^n*binomial(2*n,n))/2.

Original entry on oeis.org

1, 3, 27, 270, 2835, 30618, 336798, 3752892, 42220035, 478493730, 5454828522, 62482581252, 718549684398, 8290957896900, 95938227092700, 1112883434275320, 12937269923450595, 150681143814306930, 1757946677833580850, 20540219077844997300, 240320563210786468410
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Crossrefs

Programs

  • Magma
    [(0^n + 3^n * Binomial(2*n, n))/2: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Mathematica
    CoefficientList[Series[(6x)/(Sqrt[1-12x](1-Sqrt[1-12x])),{x,0,30}],x] (* Harvey P. Dale, Nov 29 2023 *)
    Table[(3^n*Binomial[2*n,n] +Boole[n==0])/2, {n,0,40}] (* G. C. Greubel, Dec 27 2023 *)
    a[n_] := 3^n*HypergeometricPFQ[{-n, -n + 1}, {1}, 1]; Flatten[Table[a[n], {n,0,20}]] (* Detlef Meya, May 21 2024 *)
  • SageMath
    [(3^n*binomial(2*n,n) + int(n==0))/2 for n in range(41)] # G. C. Greubel, Dec 27 2023

Formula

a(n+1) = 3*A098399(n).
G.f.: 6*x/(sqrt(1-12*x)*(1-sqrt(1-12*x))).
n*a(n) - 6*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 13/11 + 24*arcsin(1/(2*sqrt(3)))/(11*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 11/13 - 24*arcsinh(1/(2*sqrt(3)))/(13*sqrt(13)). (End)
a(n) = 3^n*hypergeom([-n, -n + 1], [1], 1). - Detlef Meya, May 21 2024

A188632 Size of optimal DNA code of length n and minimal distance 1 over alphabet of size 4.

Original entry on oeis.org

1, 4, 12, 44, 160, 640, 2240, 8912, 32256
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2011

Keywords

Comments

See Sun et al. reference for precise definition.

References

  • J. Sun, S. Houghten and J. Ross, Edit metric codes with combinatorial DNA constraints, Congessus Numerant., 204 (2010), 65-92 (see Table 1).

Formula

One bisection appears to be A098400.
Showing 1-5 of 5 results.