cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225987 T(n,k)=Number of pairs of orthogonal (-x,y) vectors of length k*(x+y), where x/y is the n-th rational <= 1, ordered first by y and then x, e.g. 1/1, 1/2, 1/3, 2/3, 1/4, 3/4 ...

Original entry on oeis.org

4, 48, 9, 640, 390, 20, 8960, 20160, 3192, 60, 129024, 1106424, 652784, 48720, 45, 1892352, 62606544, 134432480, 41801760, 26010, 420, 28114944, 3611217792, 28244153600, 36951200000, 21594300, 8168160, 102, 421724160, 211096262400
Offset: 1

Views

Author

R. H. Hardin, May 22 2013

Keywords

Comments

Table starts
..4....48......640........8960.........129024...........1892352
..9...390....20160.....1106424.......62606544........3611217792
.20..3192...652784...134432480....28244153600.....6052498776192
.60.48720.41801760.36951200000.33792065269760.31520952625612800
.45.26010.21594300.15593341800.11432293516320..8690522384325600

Examples

			Some solutions for n=1 k=4
.-1..1....1..1...-1.-1...-1.-1...-1..1....1..1...-1..1...-1.-1...-1.-1...-1..1
..1..1...-1.-1...-1..1...-1..1....1..1...-1..1...-1.-1...-1..1...-1..1...-1.-1
.-1..1...-1..1....1..1...-1.-1...-1..1....1.-1....1.-1...-1.-1....1.-1....1.-1
.-1.-1...-1.-1....1.-1...-1.-1....1..1...-1.-1....1.-1...-1..1....1.-1....1.-1
..1.-1....1.-1...-1.-1....1.-1...-1.-1...-1.-1....1..1...-1..1...-1..1...-1.-1
..1.-1...-1..1....1..1....1..1...-1..1....1.-1....1.-1...-1.-1...-1.-1...-1.-1
..1..1....1..1...-1..1....1.-1....1.-1....1.-1....1..1....1..1...-1.-1...-1.-1
..1..1....1.-1...-1..1...-1..1...-1.-1...-1.-1....1..1....1.-1...-1.-1....1.-1
		

Crossrefs

Row 1 is A098402.

A055372 Invert transform of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 4, 12, 12, 4, 8, 32, 48, 32, 8, 16, 80, 160, 160, 80, 16, 32, 192, 480, 640, 480, 192, 32, 64, 448, 1344, 2240, 2240, 1344, 448, 64, 128, 1024, 3584, 7168, 8960, 7168, 3584, 1024, 128, 256, 2304, 9216, 21504, 32256, 32256, 21504, 9216, 2304, 256
Offset: 0

Views

Author

Christian G. Bower, May 16 2000

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
T(n,k) is the number of nonempty bit strings with n bits and exactly k 1's over all strings in the sequence. For example, T(2,1)=4 because we have {(01)},{(10)},{(0),(1)},{(1),(0)}. - Geoffrey Critzer, Apr 06 2013

Examples

			Triangle begins:
  1;
  1,  1;
  2,  4,  2;
  4, 12, 12,  4;
  8, 32, 48, 32,  8;
  ...
		

Crossrefs

Row sums give A081294. Cf. A000079, A007318, A055373, A055374.
Cf. A134309.
T(2n,n) gives A098402.

Programs

  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];a=(x+y x)/(1-(x+y x));Map[f,CoefficientList[Series[1/(1-a),{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Apr 06 2013 *)

Formula

a(n,k) = 2^(n-1)*C(n, k), for n>0.
G.f.: A(x, y)=(1-x-xy)/(1-2x-2xy).
As an infinite lower triangular matrix, equals A134309 * A007318. - Gary W. Adamson, Oct 19 2007
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A081294(n), A081341(n), A092811(n), A093143(n), A067419(n) for x = -1, 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Feb 05 2012

A098401 a(n) = (0^n + 3^n*binomial(2*n,n))/2.

Original entry on oeis.org

1, 3, 27, 270, 2835, 30618, 336798, 3752892, 42220035, 478493730, 5454828522, 62482581252, 718549684398, 8290957896900, 95938227092700, 1112883434275320, 12937269923450595, 150681143814306930, 1757946677833580850, 20540219077844997300, 240320563210786468410
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Crossrefs

Programs

  • Magma
    [(0^n + 3^n * Binomial(2*n, n))/2: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Mathematica
    CoefficientList[Series[(6x)/(Sqrt[1-12x](1-Sqrt[1-12x])),{x,0,30}],x] (* Harvey P. Dale, Nov 29 2023 *)
    Table[(3^n*Binomial[2*n,n] +Boole[n==0])/2, {n,0,40}] (* G. C. Greubel, Dec 27 2023 *)
    a[n_] := 3^n*HypergeometricPFQ[{-n, -n + 1}, {1}, 1]; Flatten[Table[a[n], {n,0,20}]] (* Detlef Meya, May 21 2024 *)
  • SageMath
    [(3^n*binomial(2*n,n) + int(n==0))/2 for n in range(41)] # G. C. Greubel, Dec 27 2023

Formula

a(n+1) = 3*A098399(n).
G.f.: 6*x/(sqrt(1-12*x)*(1-sqrt(1-12*x))).
n*a(n) - 6*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 13/11 + 24*arcsin(1/(2*sqrt(3)))/(11*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 11/13 - 24*arcsinh(1/(2*sqrt(3)))/(13*sqrt(13)). (End)
a(n) = 3^n*hypergeom([-n, -n + 1], [1], 1). - Detlef Meya, May 21 2024
Showing 1-3 of 3 results.