A082142 Duplicate of A069723.
1, 2, 12, 80, 560, 4032, 29568, 219648, 1647360, 12446720, 94595072, 722362368
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a069720 n = (a000079 $ n - 1) * (a001700 $ n - 1) -- Reinhard Zumkeller, Jan 15 2015
[2^(n-2)*Binomial(2*n, n): n in [1..25]]; // Vincenzo Librandi, Apr 14 2018
Z:=(1-sqrt(1-2*z))*4^(n-1)/sqrt(1-2*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..20); # Zerinvary Lajos, Jan 01 2007
Table[2^(n-1) Binomial[2n-1,n],{n,20}] (* Harvey P. Dale, Jan 20 2013 *)
a(n) = binomial(2*n-1,n)<<(n-1) \\ Charles R Greathouse IV, Feb 06 2017
def A069720(n): return 2^(n-2)*binomial(2*n, n) print([A069720(n) for n in range(1,31)]) # G. C. Greubel, Jan 18 2025
Rows begin 1 1 2 4 8 ... 1 2 6 16 40 ... 1 3 12 40 120 ... 1 4 20 80 280 ... 1 5 30 140 560 ... Read as a triangle, this begins: 1 1, 1 1, 2, 2 1, 3, 6, 4 1, 4, 12, 16, 8 1, 5, 20, 40, 40, 16 1, 6, 30, 80, 120, 96, 32 ... - _Philippe Deléham_, Nov 10 2013
# As a triangular array: T := (n,k) -> 2^(k+0^k-1)*binomial(n,k): for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Nov 10 2017
rows = 11; t[n_, k_] := 2^(n-1)*(n+k)!/(n!*k!); t[0, ] = 1; tkn = Table[ t[n, k], {k, 0, rows}, {n, 0, rows}]; Flatten[ Table[ tkn[[ n-k+1, k ]], {n, 1, rows}, {k, 1, n}]] (* _Jean-François Alcover, Jan 20 2012 *)
def A082137_row(n) : # as a triangular array var('z') s = (exp(z*x)/(1-tanh(x))).series(x,n+2) t = factorial(n)*s.coefficient(x,n) return [t.coefficient(z,n-k) for k in (0..n)] for n in (0..7) : print(A082137_row(n)) # Peter Luschny, Aug 01 2012
Triangle begins 1; 1, 1; 2, 2, 1; 4, 6, 3, 1; 8, 16, 12, 4, 1; 16, 40, 40, 20, 5, 1; 32, 96, 120, 80, 30, 6, 1; 64, 224, 336, 280, 140, 42, 7, 1; 128, 512, 896, 896, 560, 224, 56, 8, 1; 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1; 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1;
A119468_row := proc(n) local s,t,k; s := series(exp(z*x)/(1-tanh(x)),x,n+2); t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end: for n from 0 to 7 do A119468_row(n) od; # Peter Luschny, Aug 01 2012 # Alternatively: T := (n, k) -> 2^(n-k-1+0^(n-k))*binomial(n,k): for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Nov 10 2017
A[k_] := Table[If[m < n, 1, -1], {m, k}, {n, k}]; a = Join[{{1}}, Table[(-1)^n*CoefficientList[CharacteristicPolynomial[A[n], x], x], {n, 1, 10}]]; Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Jan 25 2009 *) Table[Sum[Binomial[n,2j]Binomial[n-2j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 14 2022 *)
R = PolynomialRing(QQ, 'x') def p(n,x) : return 1 if n==0 else add((-1)^n*binomial(n,k)*(x^(n-k)-1) for k in range(n)) def A119468_row(n): x = R.gen() return [abs(cf) for cf in list((p(n,x-1)-p(n,x+1))/2+x^n)] for n in (0..8) : print(A119468_row(n)) # Peter Luschny, Jul 22 2012
a(0)=(2^(-1)+(0^0)/2)C(1,0)=2*(1/2)=1 (use 0^0=1).
a082143 0 = 1 a082143 n = (a000079 $ n - 1) * (a001700 n) -- Reinhard Zumkeller, Jan 15 2015
[(2^(n-1) + 0^n/2)*Binomial(2*n+1,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
Join[{1}, Table[2^(n-1)* Binomial[2*n+1,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+1,n), ", ")) \\ G. C. Greubel, Feb 05 2018
[4^n*(2*n+1)*Catalan(n): n in [0..30]]; // G. C. Greubel, Dec 27 2023
Table[4^n Binomial[2n+1,n],{n,0,20}] (* Harvey P. Dale, Jan 22 2019 *)
a(n)=binomial(2*n+1,n)<<(2*n) \\ Charles R Greathouse IV, Oct 23 2023
[4^n*binomial(2*n+1,n) for n in range(31)] # G. C. Greubel, Dec 27 2023
[0] cat[2^(n-1)*Binomial(2*n-2, n-1): n in [2..20]]; // Vincenzo Librandi, Nov 17 2011
Z:=(1-sqrt(1-z))*8^n/sqrt(1-z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=0..19); # Zerinvary Lajos, Jan 01 2007
Join[{0},Table[2^(n-1) Binomial[2n-2,n-1],{n,2,20}]] (* Harvey P. Dale, Nov 16 2011 *)
a(0)=(2^(-1)+(0^0)/2)C(2,0)=2*(1/2)=1 (use 0^0=1).
[(2^(n-1) + 0^n/2)*Binomial(2*n+2,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
Join[{1}, Table[2^(n-1)*Binomial[2*n+2, n], {n,1,50}]] (* G. C. Greubel, Feb 05 2018 *)
for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+2,n), ", ")) \\ G. C. Greubel, Feb 05 2018
a(0) = ( 2^(-1)+(0^0)/2 )*C(3,0) = ( 1/2+1/2 )*1 = 1 (use 0^0 = 1). - clarified by _Jon Perry_, Oct 29 2014
[(2^(n-1)+(0^n)/2)*Binomial(2*n+3, n): n in [0..30]]; // Vincenzo Librandi, Oct 30 2014
Z:=(1-3*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=4..23); # Zerinvary Lajos, Jan 01 2007
Join[{1}, Table[2^(n-1)* Binomial[2*n+3,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+3,n), ", ")) \\ G. C. Greubel, Feb 05 2018
[3^n*Binomial(2*n+1, n): n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
Z:=(1-sqrt(1-3*z))*4^n/sqrt(1-3*z)/6: Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..18); # Zerinvary Lajos, Jan 01 2007
Table[3^n Binomial[2n+1,n], {n,0,20}] (* Harvey P. Dale, Mar 28 2012 *)
a(n)=binomial(2*n+1,n)*3^n \\ Charles R Greathouse IV, Oct 23 2023
[3^n*binomial(2*n+1, n) for n in range(21)] # G. C. Greubel, Dec 27 2023
Comments