Original entry on oeis.org
0, 16, 576, 25600, 1254400, 65028096, 3497066496, 192980975616, 10855179878400, 619683355033600, 35792910586740736, 2087229562810269696, 122682715414070296576, 7259332273021911040000, 432004345063916175360000, 25835779854133582469529600
Offset: 0
-
Flatten[{0, Table[2^(2*n) * Binomial[2*n, n]^2, {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 28 2019 *)
CoefficientList[Series[-1 + 2*EllipticK[1 - 1/(1 - 64*x)] / (Pi*Sqrt[1 - 64*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
A069723
a(n) = 2^(n-1)*binomial(2*n-3, n-1).
Original entry on oeis.org
1, 2, 12, 80, 560, 4032, 29568, 219648, 1647360, 12446720, 94595072, 722362368, 5538111488, 42600857600, 328635187200, 2541445447680, 19696202219520, 152935217233920, 1189496134041600, 9265548833587200, 72271280901980160, 564404288948797440, 4412615349963325440
Offset: 1
-
Z:=(1-sqrt(1-z))*8^n/sqrt(1-z)/2: Zser:=series(Z, z=0, 33): seq(coeff(Zser, z, n), n=0..20); # Zerinvary Lajos, Jan 16 2007
-
Table[2^(n - 1) * Binomial[2*n - 3, n - 1], {n, 1,50}] (* G. C. Greubel, Jan 15 2017 *)
-
# Assuming offset 0:
A069723 = lambda n: (rising_factorial(n, n)/factorial(n)) << n
[A069723(n) for n in (0..20)] # Peter Luschny, Nov 30 2014
A069721
Number of rooted unicursal planar maps with n edges and no vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
Original entry on oeis.org
0, 0, 4, 40, 336, 2688, 21120, 164736, 1281280, 9957376, 77395968, 601968640, 4686094336, 36515020800, 284817162240, 2223764766720, 17379001958400, 135942415319040, 1064286014668800, 8338993950228480, 65388301768458240, 513094808135270400, 4028909667357818880
Offset: 1
G.f. = 4*x^3 + 40*x^4 + 336*x^5 + 2688*x^6 + 21120*x^7 + 164736*x^8 + ...
- Robert Israel, Table of n, a(n) for n = 1..1109
- Valery A. Liskovets and Timothy R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
- Youngja Park and SeungKyung Park, Enumeration of generalized lattice paths by string types, peaks, and ascents, Discrete Mathematics 339.11 (2016): 2652-2659.
-
[0] cat [2^(n-2)*(n-2)*Binomial(2*n-2, n-1)/n: n in [2..25]]; // Vincenzo Librandi, Nov 13 2016
-
0, seq(2^(n-2)*(n-2)*binomial(2*n-2, n-1)/n, n=2..30); # Robert Israel, Nov 12 2016
-
a[ n_] := SeriesCoefficient[ ((1 - Sqrt[1 - 8 x])/2)^3 / (2 Sqrt[1 - 8 x] ), {x, 0, n}]; (* Michael Somos, Nov 13 2016 *)
A335183
T(n,k) = Sum_{j=1..n} 2^j*binomial(2*n-2*j, n-j)*binomial(n+j, n)*binomial(j, k), triangle read by rows (n >= 0 and 0 <= k <= n).
Original entry on oeis.org
0, 4, 4, 36, 60, 24, 288, 688, 560, 160, 2240, 7080, 8760, 5040, 1120, 17304, 68712, 114576, 99456, 44352, 8064, 133672, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1034880, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720, 439296
Offset: 0
Table T(n,k) (with rows n >= 0 and columns k = 0..n) begins as follows:
0;
4, 4;
36, 60, 24;
288, 688, 560, 160;
2240, 7080, 8760, 5040, 1120;
17304, 68712, 114576, 99456, 44352, 8064;
133672, 642824, 1351840, 1572480, 1055040, 384384, 59136;
...
-
t[l_, m_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, 1, m}]; Table[t[l, m], {m, 0, 7}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014 from the original version of A126936 *)
-
T(n,k) = sum(j=1, n, 2^j*binomial(2*n-2*j, n-j)*binomial(n+j, n)*binomial(j, k));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n,k), ", "); ); print(); ); }
Showing 1-4 of 4 results.
Comments