cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A069720 a(n) = 2^(n-1)*binomial(2*n-1, n).

Original entry on oeis.org

1, 6, 40, 280, 2016, 14784, 109824, 823680, 6223360, 47297536, 361181184, 2769055744, 21300428800, 164317593600, 1270722723840, 9848101109760, 76467608616960, 594748067020800, 4632774416793600, 36135640450990080, 282202144474398720, 2206307674981662720, 17266755717247795200
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Number of rooted unicursal planar maps with n edges (unicursal means that exactly two nodes are of odd valency; there is an Eulerian path).

Crossrefs

First superdiagonal of number array A082137.

Programs

  • Haskell
    a069720 n = (a000079 $ n - 1) * (a001700 $ n - 1)
    -- Reinhard Zumkeller, Jan 15 2015
    
  • Magma
    [2^(n-2)*Binomial(2*n, n): n in [1..25]]; // Vincenzo Librandi, Apr 14 2018
    
  • Maple
    Z:=(1-sqrt(1-2*z))*4^(n-1)/sqrt(1-2*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..20); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Table[2^(n-1) Binomial[2n-1,n],{n,20}] (* Harvey P. Dale, Jan 20 2013 *)
  • PARI
    a(n) = binomial(2*n-1,n)<<(n-1) \\ Charles R Greathouse IV, Feb 06 2017
    
  • SageMath
    def A069720(n): return 2^(n-2)*binomial(2*n, n)
    print([A069720(n) for n in range(1,31)]) # G. C. Greubel, Jan 18 2025

Formula

a(n) = 2^(n-2)*binomial(2*n, n).
G.f.: (1-sqrt(1-8*x))/(4*x*sqrt(1-8*x)) = 2/(sqrt(1-8*x)*(1-sqrt(1-8*x))) - 1/(2*x). - Paul Barry, Sep 06 2004
D-finite with recurrence: n*a(n) - 4*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Apr 01 2012
E.g.f.: a(n) = n! * [x^n] (exp(4*x)*BesselI(0, 4*x) - 1)/4. - Peter Luschny, Aug 25 2012
From Reinhard Zumkeller, Jan 15 2015: (Start)
a(n) = A000079(n-1) * A001700(n-1); for n > 1:
a(n) = 2*A082143(n-1). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=1} 1/a(n) = 4/7 + 32*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4/9 + 16*log(2)/27. (End)
a(n) = ((2*n)!/4) * [x^n] (BesselI(0, 2*sqrt(2*x)) - 1). - G. C. Greubel, Jan 18 2025

A069723 a(n) = 2^(n-1)*binomial(2*n-3, n-1).

Original entry on oeis.org

1, 2, 12, 80, 560, 4032, 29568, 219648, 1647360, 12446720, 94595072, 722362368, 5538111488, 42600857600, 328635187200, 2541445447680, 19696202219520, 152935217233920, 1189496134041600, 9265548833587200, 72271280901980160, 564404288948797440, 4412615349963325440
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Number of rooted unicursal planar maps with n edges and two vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Crossrefs

Main diagonal of array A082137.

Programs

  • Maple
    Z:=(1-sqrt(1-z))*8^n/sqrt(1-z)/2: Zser:=series(Z, z=0, 33): seq(coeff(Zser, z, n), n=0..20); # Zerinvary Lajos, Jan 16 2007
  • Mathematica
    Table[2^(n - 1) * Binomial[2*n - 3, n - 1], {n, 1,50}] (* G. C. Greubel, Jan 15 2017 *)
  • Sage
    # Assuming offset 0:
    A069723  = lambda n: (rising_factorial(n, n)/factorial(n)) << n
    [A069723(n) for n in (0..20)] # Peter Luschny, Nov 30 2014

Formula

a(n) = A069722(n)/2, n>1.
G.f.: 4*x/(sqrt(1-8*x) * (1-sqrt(1-8*x))). - Paul Barry, Sep 06 2004
With offset 0: a(n) = (0^n + 2^n*binomial(2n, n))/2. - Paul Barry, Sep 24 2004
D-finite with recurrence (-n+1)*a(n) + 4*(2*n-3)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
With offset 0: a(n) = 2^n*rf(n,n)/n! = 2^n*A088218(n), where rf denotes the rising factorial. - Peter Luschny, Nov 30 2014
a(n) = Sum_{k=0..n} binomial(n+k-1,k)*binomial(2*n-1, n-k). - Vladimir Kruchinin, Nov 11 2016
a(n) ~ 2^(3*n-4)/sqrt(Pi*n). - Ilya Gutkovskiy, Nov 11 2016
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=1} 1/a(n) = 9/7 + 16*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/9 - 8*log(2)/27. (End)

A082137 Square array of transforms of binomial coefficients, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 8, 1, 5, 20, 40, 40, 16, 1, 6, 30, 80, 120, 96, 32, 1, 7, 42, 140, 280, 336, 224, 64, 1, 8, 56, 224, 560, 896, 896, 512, 128, 1, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 1, 10, 90, 480, 1680, 4032, 6720, 7680, 5760, 2560, 512
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Comments

Rows are associated with the expansions of (x^k/k!)exp(x)cosh(x) (leading zeros dropped). Rows include A011782, A057711, A080929, A082138, A080951, A082139, A082140, A082141. Columns are of the form 2^(k-1)C(n+k, k). Diagonals include A069723, A082143, A082144, A082145, A069720.
T(n, k) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha)= |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
Read as a triangle this is A119468 with rows reversed. A119468 has e.g.f. exp(z*x)/(1-tanh(x)). - Peter Luschny, Aug 01 2012
Read as a triangle this is a subtriangle of A198793. - Philippe Deléham, Nov 10 2013

Examples

			Rows begin
  1 1  2   4   8 ...
  1 2  6  16  40 ...
  1 3 12  40 120 ...
  1 4 20  80 280 ...
  1 5 30 140 560 ...
Read as a triangle, this begins:
  1
  1, 1
  1, 2,  2
  1, 3,  6,  4
  1, 4, 12, 16,   8
  1, 5, 20, 40,  40, 16
  1, 6, 30, 80, 120, 96, 32
  ... - _Philippe Deléham_, Nov 10 2013
		

Crossrefs

Programs

Formula

Square array defined by T(n, k)=(2^(n-1)+0^n/2)C(n + k, n)= Sum{k=0..n, C(n+k, k+j)C(k+j, k)(1+(-1)^j)/2 }.
As an infinite lower triangular matrix, equals A007318 * A134309. - Gary W. Adamson, Oct 19 2007
O.g.f. for array read as a triangle: (1-x*(1+t))/((1-x)*(1-x*(1+2*t))) = 1 + x*(1+t) + x^2*(1+2*t+2*t^2) + x^3*(1+3*t+6*t^2+4*t^3) + .... - Peter Bala, Apr 26 2012
For array read as a triangle: T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) -2*T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 10 2013

A082144 A subdiagonal of number array A082137.

Original entry on oeis.org

1, 4, 30, 224, 1680, 12672, 96096, 732160, 5601024, 42997760, 331082752, 2556051456, 19778969600, 153363087360, 1191302553600, 9268801044480, 72219408138240, 563445537177600, 4401135695953920, 34414895667609600, 269374774271016960, 2110381254330286080
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Examples

			a(0)=(2^(-1)+(0^0)/2)C(2,0)=2*(1/2)=1 (use 0^0=1).
		

Crossrefs

Programs

  • Magma
    [(2^(n-1) + 0^n/2)*Binomial(2*n+2,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Join[{1}, Table[2^(n-1)*Binomial[2*n+2, n], {n,1,50}]] (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+2,n), ", ")) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = (2^(n-1) + 0^n/2)*C(2*n+2, n).
(n+2)*a(n) +12*(-n-1)*a(n-1) +16*(2*n-1)*a(n-2)=0. - R. J. Mathar, Oct 29 2014
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 88*arccot(sqrt(7))/(7*sqrt(7)) - 3/7.
Sum_{n>=0} (-1)^n/a(n) = 52*log(2)/27 - 5/9. (End)

A082145 A subdiagonal of number array A082137.

Original entry on oeis.org

1, 5, 42, 336, 2640, 20592, 160160, 1244672, 9674496, 75246080, 585761792, 4564377600, 35602145280, 277970595840, 2172375244800, 16992801914880, 133035751833600, 1042374243778560, 8173537721057280, 64136851016908800, 503613708419727360, 3956964851869286400
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Examples

			a(0) = ( 2^(-1)+(0^0)/2 )*C(3,0) = ( 1/2+1/2 )*1 = 1 (use 0^0 = 1). - clarified by _Jon Perry_, Oct 29 2014
		

Crossrefs

Programs

  • Magma
    [(2^(n-1)+(0^n)/2)*Binomial(2*n+3, n): n in [0..30]]; // Vincenzo Librandi, Oct 30 2014
    
  • Maple
    Z:=(1-3*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=4..23); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Join[{1}, Table[2^(n-1)* Binomial[2*n+3,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+3,n), ", ")) \\ G. C. Greubel, Feb 05 2018

Formula

a(n) = ( 2^(n-1) + (0^n)/2 )*binomial(2*n+3, n).
(n+3)*a(n) +2*(-7*n-13)*a(n-1) +24*(2*n+1)*a(n-2)=0. - R. J. Mathar, Oct 29 2014
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 37/7 - 208*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 296*log(2)/27 - 61/9. (End)
Showing 1-5 of 5 results.