cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Len Smiley

Len Smiley's wiki page.

Len Smiley has authored 72 sequences. Here are the ten most recent ones:

A111275 Number of inequivalent non-crossing partitions of n (equally spaced) points on a circle, under rotations and reflections.

Original entry on oeis.org

1, 2, 3, 6, 10, 24, 49, 130, 336, 980, 2904, 9176, 29432, 97356, 326399, 1111770, 3825238, 13293456, 46553116, 164200028, 582706692, 2079517924, 7458493728, 26874412064, 97241528200, 353223728624, 1287668381250, 4709805627484
Offset: 1

Author

David Callan and Len Smiley, Oct 21 2005

Keywords

Comments

These may be viewed as bracelets (able to be turned over in space) designed with n beads on a circle, each of which is a vertex of exactly one of a set of non-touching internal polygons (which may be 1-gons (beads), 2-gons (2 connected beads), etc.).

References

  • S.-C. Chang, J. L. Jacobsen, J. Salas, R. Shrock, "Exact Potts model partition functions for strips of the triangular lattice", J. Statist. Phys. 114, nos.3-4, pp. 763-823 [Corollary 2.1]
  • Motzkin, T. "Relations Between Hypersurface Cross Ratios and a Combinatorial Formula for Partitions of a Polygon for Permanent Preponderance and for Non-Associative Products." Bull. Amer. Math. Soc. 54, page 360, 1948.

Crossrefs

Cf. A209612.

Programs

  • Mathematica
    Table[Length[EquivalenceClasses[NCPartitions[n], groupDihedral[n]]], {n, 9}]

Formula

(A054357(n) + A001405(n))/2.

A111282 Number of permutations avoiding the patterns {1432,2431,3412,3421,4132,4231,4312,4321}; number of strong sorting class based on 1432.

Original entry on oeis.org

1, 2, 6, 16, 42, 110, 288, 754, 1974, 5168, 13530, 35422, 92736, 242786, 635622, 1664080, 4356618, 11405774, 29860704, 78176338, 204668310, 535828592, 1402817466, 3672623806, 9615053952, 25172538050, 65902560198, 172535142544
Offset: 1

Author

Len Smiley, Nov 01 2005

Keywords

Comments

a(n-1) is the sum, over all Boolean n-strings, of the product of the lengths of the runs. For example, the Boolean 7-string (0,1,1,0,1,1,1) has four runs, whose lengths are 1,2,1 and 3, contributing a product of 6 to a(6). The 4 Boolean 2-strings contribute to a(3) as follows: 00 and 11 both contribute 2 and 01 and 10 both contribute 1. - David Callan, Jul 22 2008
a(n) = A025169(n-2) for n > 1. - Reinhard Zumkeller, Apr 08 2012
The sequence 0, 2, 0, 0, 1, 2, 6, 16, 42, 110, 288, 754, 1974, ... with g.f. H(x) = 2*x+(x^4-x^5+x^6)/(1-3*x+x^2) is the number of "splitted indecomposable weakly threshold graphs" on n nodes [Barrus, 2016]. - N. J. A. Sloane, Jul 25 2017
Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {2>1, 2>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the second element is larger than the first and fourth elements. - Sergey Kitaev, Dec 09 2020

Examples

			x + 2*x^2 + 6*x^3 + 16*x^4 + 42*x^5 + 110*x^6 + 288*x^7 + ...
		

Programs

  • Haskell
    a111282 n = a111282_list !! (n-1)
    a111282_list = 1 : a025169_list
    -- Reinhard Zumkeller, Apr 08 2012
  • Mathematica
    a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 3a[n - 1] - a[n - 2]; Table[a[n], {n, 28}] (* Robert G. Wilson v *)

Formula

a(n) = 3a(n-1) - a(n-2), n > 3.
a(n) = A025169(n-2), n > 1. - R. J. Mathar, Aug 18 2008
From Paul Barry, Oct 13 2009: (Start)
G.f.: (1 - x + x^2)/(1 - 3x + x^2).
a(n) = F(2n+1) + F(2n-2) + 0^n. (End)

A111281 Number of permutations avoiding the patterns {2413,2431,4213,3412,3421,4231,4321,4312}; number of strong sorting class based on 2413.

Original entry on oeis.org

1, 1, 2, 6, 16, 40, 100, 252, 636, 1604, 4044, 10196, 25708, 64820, 163436, 412084, 1039020, 2619764, 6605420, 16654772, 41993004, 105880308, 266964460, 673118772, 1697188012, 4279255412, 10789627756, 27204748468, 68593500716, 172950260724, 436073277676
Offset: 0

Author

Len Smiley, Nov 01 2005

Keywords

Comments

a(n) = term (1,1) in M^n, M = the 4x4 matrix [1,1,1,1; 0,1,0,1; 0,0,1,1; 1,0,0,1]. - Gary W. Adamson, Apr 29 2009
Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>2, 1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and fourth elements. - Sergey Kitaev, Dec 09 2020

Programs

  • Mathematica
    a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 3a[n - 1] - 2a[n - 2] + 2a[n - 3]; Table[a[n], {n, 28}] (* Robert G. Wilson v *)

Formula

a(n) = 3*a(n-1)-2*a(n-2)+2*a(n-3).
G.f.: 1+x*(1-x+2*x^2)/(1-3*x+2*x^2-2*x^3). - Colin Barker, Jan 16 2012

Extensions

More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, May 07 2021

A111279 Number of permutations avoiding the patterns {3241,3421,4321}; number of weak sorting class based on 3241.

Original entry on oeis.org

1, 1, 2, 6, 21, 79, 309, 1237, 5026, 20626, 85242, 354080, 1476368, 6173634, 25873744, 108628550, 456710589, 1922354351, 8098984433, 34147706833, 144068881455, 608151037123, 2568318694867, 10850577045131, 45856273670841, 193850277807569, 819669810565949
Offset: 0

Author

Len Smiley, Nov 01 2005

Keywords

Comments

Is this the same sequence as A026737? - Andrew S. Plewe, May 09 2007
Yes, see the Callan reference "A bijection...". - Joerg Arndt, Feb 29 2016
a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>3, 1>4, 3>2} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the first element is the largest and the third element is larger than the second element. - Sergey Kitaev, Dec 10 2020

Examples

			a(4) = 21 since the top row terms of M^3 = (11, 6, 3, 1, 0, 0, 0, ...)
		

Programs

  • Mathematica
    Rest[ CoefficientList[ Series[(3 - 13x + 2x^2 + (5x - 1)*Sqrt[1 - 4x])/(2*(1 - 4x - x^2)), {x, 0, 24}], x]] (* Robert G. Wilson v, Nov 04 2005 *)

Formula

O.g.f.: (3-13*x+2*x^2+(5*x-1)*sqrt(1-4*x))/(2*(1-4*x-x^2)).
From Gary W. Adamson, Nov 14 2011: (Start)
a(n) is the sum of top row terms of M^(n-1), M is an infinite square production matrix with powers of 2 as the left border as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
4, 1, 1, 1, 0, ...
8, 1, 1, 1, 1, ...
... (End)
The top rows of these matrix powers, 1; 1,1; 3,2,1; 11,6,3,1; 43,21,10,4,1; appear also as columns in A026736. - R. J. Mathar, Nov 15 2011
D-finite with recurrence n*a(n) + (16-13*n)*a(n-1)+(55*n-134)*a(n-2) + (264-71*n)*a(n-3) + 10*(7-2*n)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
Shorter recurrence: n*(n+5)*a(n) = 2*(4*n^2 + 17*n - 30)*a(n-1) - 3*(5*n^2 + 17*n - 80)*a(n-2) - 2*(n+6)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ (5/2-11/10*sqrt(5))*(sqrt(5)+2)^n. - Vaclav Kotesovec, Oct 18 2012

Extensions

More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, Dec 11 2020

A111284 Number of permutations of [n] avoiding the patterns {2143, 2341, 2413, 2431, 3142, 3241, 3412, 3421, 4123, 4213, 4231, 4321, 4132, 4312}; number of strong sorting classes based on 2143.

Original entry on oeis.org

1, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 1

Author

Len Smiley, Nov 01 2005

Keywords

Comments

This sequence might also be called "The Non-Pythagorean integers" since no primitive Pythagorean triangle (PPT) exists containing them. Numbers of the form 4n-2 cannot be a leg or hypotenuse of PPT [a,b,c]. This excludes all even members of the present sequence. Integers 1 and zero are excluded because they form a 'degenerate triangle' with angles = 0. Compare A125667. - H. Lee Price, Feb 02 2007
Besides the first term this sequence is the denominator of Pi/8 = 1/2 - 1/6 + 1/10 - 1/14 + 1/18 - 1/22 + .... - Mohammad K. Azarian, Oct 14 2011

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

Crossrefs

Cf. A125667. Complement of the union of {1}, A020882, A020883 and A020884.

Programs

Formula

a(n) = 4*n-6, n>=2.
a(n) = A016825(n-2), n>1. - R. J. Mathar, Aug 18 2008
G.f.: x(1+3x^2)/(1-x)^2. - R. J. Mathar, Nov 10 2008
a(n^2 - 2n + 3)/2 = Sum_{i=1..n} a(i). - Ivan N. Ianakiev, Apr 24 2013
a(n) = 2*a(n-1) - a(n-2), n>3. - Rick L. Shepherd, Jul 06 2017
a(n) = |A161718(n-1)| = (-1)^(n-1)*A161718(n-1), n>0. - Rick L. Shepherd, Jul 06 2017
E.g.f.: 3*(x + 2) + exp(x)*(4*x - 6). - Stefano Spezia, Feb 02 2023

A111285 Number of permutations avoiding the patterns {2431, 3421, 4231, 4321, 24513, 42513, 34512, 43512}; number of strong sorting class based on 2431.

Original entry on oeis.org

1, 1, 2, 6, 20, 66, 216, 706, 2308, 7546, 24672, 80666, 263740, 862306, 2819336, 9217906, 30138228, 98537866, 322172592, 1053353226, 3443970860, 11260168946, 36815469656, 120369313506, 393551182948, 1286727730586, 4206996000512
Offset: 0

Author

Len Smiley, Nov 01 2005

Keywords

Programs

  • Magma
    I:=[1, 2, 6]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)+2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 27 2012
  • Mathematica
    a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 4a[n - 1] - 3a[n - 2] + 2a[n - 3]; Table[a[n], {n, 26}] (* Robert G. Wilson v *)
    CoefficientList[Series[(1-2*x+x^2)/(1-4*x+3*x^2-2*x^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,-3,2},{1,2,6},40] (* Vincenzo Librandi, Jun 27 2012 *)

Formula

a(n) = 4*a(n-1) - 3*a(n-2) + 2*a(n-3), n>=4.
G.f.: 1+x*(1-x)^2/(1-4*x+3*x^2-2*x^3).
a(n) = A175005(n)+A175005(n-2)-2*A175005(n-1). - R. J. Mathar, Aug 19 2022~

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 12 2024

A111280 Number of permutations avoiding the patterns {4231, 4321, 35142, 45312, 42513, 45132, 35412, 45213, 43512, 456123, 351624, 451623, 356124}; number of strong sorting class based on 4231.

Original entry on oeis.org

1, 1, 2, 6, 22, 113, 431, 1584, 5920, 22214, 83239, 311777, 1167902, 4375090, 16389450, 61395989, 229993639, 861572476, 3227511492, 12090486122, 45291815419, 169666341761, 635582108218, 2380935499534, 8919152662622, 33411776268873
Offset: 0

Author

Len Smiley, Nov 01 2005

Keywords

Programs

  • Mathematica
    a[1] = 1; a[2] = 2; a[3] = 6; a[4] = 22; a[5] = 113; a[n_] := a[n] = 4a[n - 1] - 2a[n - 2] + 4a[n - 3] - a[n - 5]; Table[ a[n], {n, 25}] (* Robert G. Wilson v, Nov 04 2005 *)
    LinearRecurrence[{4,-2,4,0,-1},{1,2,6,22,113},30] (* Harvey P. Dale, Jun 03 2019 *)

Formula

a(n) = 4*a(n-1)-2*a(n-2)+4*a(n-3)-a(n-5).
G.f.: 1+x*(1-2*x-2*x^3+29*x^4)/(1-4*x+2*x^2-4*x^3+x^5). - Colin Barker, Jan 16 2012

Extensions

More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, Mar 12 2024

A111286 Number of permutations avoiding the patterns {1342, 1432, 2341, 2431, 3142, 3241, 3412, 3421, 4132, 4231, 4312, 4321}; number of strong sorting class based on 1342.

Original entry on oeis.org

1, 1, 2, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 0

Author

Len Smiley, Nov 01 2005

Keywords

Crossrefs

Cf. A003945, A007283, A042950, A098011, A110164 - differs from each by one initial term.

Programs

  • Mathematica
    Table[If[n == 1, 1, If[n == 2, 2, 3*2^(n - 2)]], {n, 32}] (* Robert G. Wilson v *)
    LinearRecurrence[{2},{1,2,6},40] (* Harvey P. Dale, Jul 14 2019 *)

Formula

a(n) = 3*2^(n-2), n>=3.
a(n) = 2*a(n-1) for n=3. G.f.: (1-x+2*x^3)/(1-2*x). - Colin Barker, Nov 29 2012

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 12 2024

A111276 Number of chiral non-crossing partition patterns of n points on a circle, divided by 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 14, 60, 210, 728, 2442, 8252, 27716, 93924, 319964, 1098900, 3800928, 13244836, 46460738, 164015272, 582353976, 2078812492, 7457141650, 26871707908, 97236327900, 353213328024, 1287648322950, 4709765510884, 17279999438748, 63583033400968
Offset: 1

Author

David Callan and Len Smiley, Oct 21 2005

Keywords

Comments

Half of the number of those rotation-inequivalent patterns of non-crossing partitions of n (equally spaced) points on a circle which are not invariant under reflections. Division by two counts one pattern from each chiral (Right-handed,Left-handed) pair.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n < 6, 0, ((Binomial[2n, n]/(n+1) + DivisorSum[n, Binomial[2#, #] EulerPhi[n/#] Boole[# < n]&])/n - Binomial[n, Floor[n/2]])/2];
    Array[a, 22] (* Jean-François Alcover, Feb 17 2019 *)
  • PARI
    a(n) = (sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1) - binomial(n,n\2))/2 \\ Andrew Howroyd, Nov 19 2024

Formula

a(n) = (A054357(n) - A001405(n))/2.

Extensions

a(23) onwards from Andrew Howroyd, Nov 19 2024

A111283 Number of permutations avoiding the patterns {4321, 45132, 45231, 35412, 53412, 45213, 43512, 45312, 456123, 451623, 356124}; number of strong sorting class based on 4321.

Original entry on oeis.org

1, 1, 2, 6, 23, 96, 409, 1751, 7505, 32176, 137956, 591501, 2536132, 10873981, 46623553, 199904321, 857114814, 3674987126, 15756967635, 67559972476, 289671844661, 1242004318751, 5325249092137, 22832672531956, 97897943538708
Offset: 0

Author

Len Smiley, Nov 01 2005

Keywords

Programs

  • Mathematica
    a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 4a[n - 1] + a[n - 2] + a[n - 3] - 4; Table[a[n], {n, 24}] (* Robert G. Wilson v, Nov 04 2005 *)
    LinearRecurrence[{5,-3,0,-1},{1,2,6,23},30] (* Harvey P. Dale, Jan 01 2017 *)

Formula

a(n) = 4*a(n-1) + a(n-2) + a(n-3) - 4; n>=4.
G.f.: 1+x*(1-3*x-x^2-x^3)/((1-x)*(1-4*x-x^2-x^3)). - Colin Barker, Jan 16 2012
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-4). - Wesley Ivan Hurt, Aug 04 2025

Extensions

More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, Mar 12 2024