A113127 Expansion of (1 + x + x^2 + x^3)/(1-x)^2.
1, 3, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Allan Bickle, Structural results on maximal k-degenerate graphs, Discuss. Math. Graph Theory 32 4 (2012), 659-676.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- D. R. Lick and A. T. White, k-degenerate graphs, Canad. J. Math. 22 (1970), 1082-1096.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Magma
[4*n-2+2*Binomial(0, n)+Binomial(1, n): n in [0..80]]; // Vincenzo Librandi, Nov 03 2018
-
Mathematica
CoefficientList[Series[(1 + x + x^2 + x^3) / (1 - x)^2, {x, 0, 100}], x] (* Vincenzo Librandi, Nov 03 2018 *) LinearRecurrence[{2,-1},{1,3,6,10},60] (* Harvey P. Dale, Jul 08 2019 *)
-
PARI
x='x+O('x^66); Vec((1+x+x^2+x^3)/(1-x)^2) \\ Joerg Arndt, May 06 2013
Formula
a(n) = 4*n - 2 + 2*binomial(0, n) + binomial(1, n);
a(n) = binomial(n+1, n) + binomial(n, n-1) + binomial(n-1, n-2) + binomial(n-2, n-3).
Row sums of triangle A131034. - Gary W. Adamson, Jun 10 2007
G.f.: (x^2-1)/Q(0), where Q(k)= 4*x - 1 + x*k - x*(x-1)*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 05 2013
a(n) = A111284(n+1) for n >= 2. - Georg Fischer, Nov 02 2018
a(n) = 4*(n+2) - 10 for n >= 2. - Allan Bickle, Nov 14 2021
Comments