cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A181527 Binomial transform of A113127; (1, 1, 3, 7, 15, 31, ...) convolved with (1, 3, 7, 15, 31, 63, ...).

Original entry on oeis.org

1, 4, 13, 38, 103, 264, 649, 1546, 3595, 8204, 18445, 40974, 90127, 196624, 426001, 917522, 1966099, 4194324, 8912917, 18874390, 39845911, 83886104, 176160793, 369098778, 771751963, 1610612764, 3355443229, 6979321886, 14495514655, 30064771104, 62277025825
Offset: 0

Views

Author

Gary W. Adamson, Oct 26 2010

Keywords

Comments

A181527 = Partial sums of (A002064 Cullen numbers: n*2^n+1). - Vladimir Joseph Stephan Orlovsky, Jul 09 2011
Form a triangle with T(1,1) = n, T(2,1) = T(2,2) = n-1, T(3,1) = T(3,3) = n-2, ..., T(n,1) = T(n,n) = 1. The interior members are T(i,j) = T(i-1,j-1) + T(i-1,j). The sum of all members for a triangle of size n is a(n-1). Example for n = 5: row(1) = 5; row(2) = 4, 4; row(3) = 3, 8, 3; row(4) = 2, 11, 11, 2; row(5) = 1, 13, 22, 13, 1. The sum of all members is 103 = a(4). - J. M. Bergot, Oct 16 2012

Examples

			a(4) = 103 = (1, 1, 3, 7, 15) dot (31, 15, 7, 3, 1) = (31 + 15 + 21, + 21 + 15)
a(3) = 38 = (1, 3, 3, 1) dot (1, 3, 6, 10) = (1 + 9 + 18 + 10).
		

Crossrefs

Programs

Formula

Binomial transform of A113127; (1, 3, 7, 15, 31, ...) convolved with (1, 1, 3, 7, 15, 31, ...).
From R. J. Mathar, Oct 30 2010: (Start)
a(n) = 3+ n + 2^(n+1)*(n-1) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: ( 1-2*x+2*x^2 ) / ( (2*x-1)^2*(x-1)^2 ). (End)

A167381 The numbers read down the left-center column of an arrangement of the natural numbers in square blocks.

Original entry on oeis.org

1, 3, 6, 10, 14, 18, 23, 29, 35, 41, 47, 53, 60, 68, 76, 84, 92, 100, 108, 116, 125, 135, 145, 155, 165, 175, 185, 195, 205, 215, 226, 238, 250, 262, 274, 286, 298, 310, 322, 334, 346, 358, 371, 385, 399, 413, 427, 441, 455, 469, 483, 497, 511, 525, 539, 553
Offset: 1

Views

Author

Paul Curtz, Nov 02 2009

Keywords

Comments

The natural numbers are filled into square blocks of edge length 2, 4, 6, 8, ...
by taking A016742(n+1) = 4, 16, 36, ... at a time:
.......1..2......
.......3..4......
....5..6..7..8...
....9.10.11.12...
...13.14.15.16...
...17.18.19.20...
21.22.23.24.25.26
27.28.29.30.31.32
33.34.35.36.37.38
39.40.41.42.43.44
Reading down the column just left from the center yields a(n).
The length of the rows is given by A001670.
The number of elements in each square block, 4, 16, 36, etc., are the first differences of A166464:
A016742(n) = A166464(n)-A166464(n-1).
Reading the blocks from right to left, row by row, we obtain a permutation of the integers, which starts similar to A166133.

Crossrefs

Cf. A113127, A167991 (first differences).

Programs

  • Mathematica
    r[1] = Range[4]; r[n_] := r[n] = Range[r[n-1][[-1]]+1, r[n-1][[-1]]+(2n)^2 ];
    s[n_] := Partition[r[n], Sqrt[Length[r[n]]]][[All, n]];
    A167381 = Table[s[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Mar 26 2017 *)
    Module[{nn=7,c},c=TakeList[Range[(2/3)*nn(nn+1)(2*nn+1)],(2*Range[ nn])^2]; Table[Take[c[[n]],{n,-1,2*n}],{n,nn}]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 18 2018 *)

Extensions

Edited by R. J. Mathar, Aug 29 2010
More terms from Jean-François Alcover, Mar 26 2017

A113126 A simple 4-diagonal matrix.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 0, 2, 3, 4, 5, 0, 0, 3, 4, 5, 6, 0, 0, 0, 4, 5, 6, 7, 0, 0, 0, 0, 5, 6, 7, 8, 0, 0, 0, 0, 0, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 10, 0, 0, 0, 0, 0, 0, 0, 8, 9, 10, 11, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 11, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 12, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Oct 14 2005

Keywords

Comments

Row sums are A113127. Diagonal sums are A109613. Diagonals are A000027.

Examples

			Triangle begins
1;
1,2;
1,2,3;
1,2,3,4;
0,2,3,4,5;
0,0,3,4,5,6;
0,0,0,4,5,6,7;
0,0,0,0,5,6,7,8;
0,0,0,0,0,6,7,8,9;
		

Crossrefs

Cf. A113125.

Formula

Number triangle where column k has g.f. (1+x+x^2+x^3)(k+1)x^k.

A133653 A007318^(-1) * A003261.

Original entry on oeis.org

1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154
Offset: 1

Views

Author

Gary W. Adamson, Sep 19 2007

Keywords

Comments

It appears this sequence gives the positive integers m such that the sum of the first m Fibonacci numbers divides their product. For example, if n=2 and m=a(2)=6, we have the sum 1+1+2+3+5+8=20 which clearly divides the corresponding product 480. See A175553 for the analogous sequence when using the triangular numbers. Sum_{k=1..n} Fibonacci(k) divides Product_{k=1..n} Fibonacci(k). - John W. Layman, Jul 10 2010

Examples

			a(4) = 14 = (1, 3, 3, 1) dot (1, 5, -1, 1) = (1, 15, -3, 1).
		

Crossrefs

Essentially the same as A130824, A113127, A111284, A073760, A016825.

Formula

Inverse binomial transform of A003261: (1, 7, 23, 63, 159, 383, ...).
Binomial transform of [1, 5, -1, 1, -1, 1, ...].
"1" followed by 2 * [3, 5, 7, 9, 11, ...].
O.g.f.: x*(1+4x-x^2)/(1-x)^2. a(n) = 4n-2, n > 1. - R. J. Mathar, Jun 08 2008
1/(1+1/(6+1/(10+1/(14+1/(...(continued fraction)))))) = (e-1)/2 with e = 2.718281...- Philippe Deléham, Mar 09 2013

Extensions

More terms from R. J. Mathar, Jun 08 2008

A110190 Number of (1,0)-steps on the lines y=0 and y=1 in all Schroeder paths of length 2n (a Schroeder path of length 2n is a path from (0,0) to (2n,0), consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis).

Original entry on oeis.org

0, 1, 5, 24, 116, 568, 2820, 14184, 72180, 371112, 1925380, 10068728, 53023860, 280969560, 1497072132, 8016213960, 43114424308, 232817773640, 1261793848836, 6861179441880, 37421756333172, 204671007577464, 1122275850740996, 6168352091629864, 33977333521770996, 187539324760522728
Offset: 0

Views

Author

Emeric Deutsch, Jul 15 2005

Keywords

Examples

			a(2)=5 because in the 6 (=A006318(2)) Schroeder paths of length 4, namely, HH, HUD, UDH, UDUD, UHD, UUDD, all 5 H-steps are at levels 0 or 1.
		

Crossrefs

Programs

  • Maple
    R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z*(1-z-2*z*R+z^2+2*z^2*R+z^2*R^2)/(1-3*z-z*R+z^2+z^2*R)^2: Gser:=series(G,z=0,30): 0,seq(coeff(Gser,z^n),n=1..26);
  • Mathematica
    CoefficientList[Series[x*(1-x-2*x*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2+2*x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x))^2)/(1-3*x-x*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2+x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x)))^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
  • Maxima
    a113127(n):=if n=0 then 1 else if n=1 then 3 else 4*n-2;
    a(n):=sum((k+1)*sum(binomial(n+1,n-k-i)*binomial(n+i,n),i,0,n-k)/(n+1)*a113127(k),k,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
  • PARI
    x = 'x+O('x^66);
    R = (1-x-sqrt(1-6*x+x^2))/(2*x);
    gf = x*(1-x-2*x*R+x^2+2*x^2*R+x^2*R^2)/(1-3*x-x*R+x^2+x^2*R)^2;
    concat([0],Vec(gf))
    \\ Joerg Arndt, May 16 2013
    

Formula

a(n) = Sum_{k=0..n} k*A110189(n,k).
G.f.: x*(1-x-2*x*R+x^2+2*x^2*R+x^2*R^2)/(1-3*x-x*R+x^2+x^2*R)^2, where R = 1+x*R+x*R^2 = (1-x-sqrt(1-6*x+x^2))/(2*x) is the g.f. for the large Schroeder numbers (A006318).
Recurrence: (n+2)*(n+3)*a(n) = (5*n^2+29*n+10)*a(n-1) + (5*n^2-59*n+142)*a(n-2) - (n-6)*(n-5)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 3*2^(1/4)*(3+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
G.f. A(x) satisfies x^2*A(x)^2 = (x^4 - 7*x^3 + 12*x^2 - 7*x + 1)*A(x) + (-x^3 + 2*x^2 - x). - Joerg Arndt, May 16 2013
a(n) = Sum_{k=0..n} ((k+1)*Sum_{i=0..n-k} (binomial(n+1,n-k-i)*binomial(n+i,n))/ (n+1)*a113127(k)). - Vladimir Kruchinin, Mar 13 2016

A131034 A129686 * A051340.

Original entry on oeis.org

1, 2, 1, 4, 1, 1, 6, 2, 1, 1, 8, 2, 2, 1, 1, 10, 2, 2, 2, 1, 12, 2, 2, 2, 2, 1, 1, 14, 2, 2, 2, 2, 2, 1, 1, 16, 2, 2, 2, 2, 2, 2, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 10 2007

Keywords

Comments

Row sums = A113127: (1, 3, 6, 10, 14, 18, 22, ...).

Examples

			First few rows of the triangle:
   1;
   2, 1;
   4, 1, 1;
   6, 2, 1, 1;
   8, 2, 2, 1, 1;
  10, 2, 2, 2, 1, 1;
  ...
		

Crossrefs

Formula

A129686 * A051340 as infinite lower triangular matrices.

A357778 Maximum number of edges in a 5-degenerate graph with n vertices.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235
Offset: 1

Views

Author

Allan Bickle, Oct 13 2022

Keywords

Comments

A maximal 5-degenerate graph can be constructed from a 5-clique by iteratively adding a new 5-leaf (vertex of degree 5) adjacent to five existing vertices.
This is also the number of edges in a 5-tree with n>5 vertices. (In a 5-tree, the neighbors of a newly added vertex must form a clique.)

Examples

			For n < 7, the only maximal 5-degenerate graph is complete.
		

References

  • Allan Bickle, Fundamentals of Graph Theory, AMS (2020).
  • J. Mitchem, Maximal k-degenerate graphs, Util. Math. 11 (1977), 101-106.

Crossrefs

Number of edges in a maximal k-degenerate graph for k=2..6: A004273, A296515, A113127, A357778, A357779.

Formula

a(n) = C(n,2) for n < 7.
a(n) = 5*n-15 for n > 4.

A357779 Maximum number of edges in a 6-degenerate graph with n vertices.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279
Offset: 1

Views

Author

Allan Bickle, Oct 13 2022

Keywords

Comments

A maximal 6-degenerate graph can be constructed from a 6-clique by iteratively adding a new 6-leaf (vertex of degree 6) adjacent to six existing vertices.
This is also the number of edges in a 6-tree with n>6 vertices. (In a 6-tree, the neighbors of a newly added vertex must form a clique.)

Examples

			For n < 8, the only maximal 6-degenerate graph is complete.
		

References

  • Allan Bickle, Fundamentals of Graph Theory, AMS (2020).
  • J. Mitchem, Maximal k-degenerate graphs, Util. Math. 11 (1977), 101-106.

Crossrefs

Number of edges in a maximal k-degenerate graph for k=2..6: A004273, A296515, A113127, A357778, A357779.

Formula

a(n) = C(n,2) for n < 8.
a(n) = 6*n-21 for n > 5.
Showing 1-8 of 8 results.