cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A167667 Expansion of (1-x+4*x^2)/(1-2*x)^2.

Original entry on oeis.org

1, 3, 12, 36, 96, 240, 576, 1344, 3072, 6912, 15360, 33792, 73728, 159744, 344064, 737280, 1572864, 3342336, 7077888, 14942208, 31457280, 66060288, 138412032, 289406976, 603979776, 1258291200, 2617245696, 5435817984, 11274289152, 23353884672, 48318382080
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2009

Keywords

Comments

Also the number of maximal and maximum cliques in the n-cube-connected cycles graph for n > 3. - Eric W. Weisstein, Dec 01 2017

Crossrefs

Cf. A167666.

Programs

  • Magma
    [1] cat [3*n*2^(n-1): n in [1..30]]; // Vincenzo Librandi, Mar 21 2015
  • Maple
    A167667:=n->3*n*2^(n-1): (1,seq(A167667(n), n=1..30)); # Wesley Ivan Hurt, Mar 20 2015
  • Mathematica
    CoefficientList[Series[(1 - x + 4*x^2)/(1 - 2*x)^2, {x, 0, 30}], x] (* Wesley Ivan Hurt, Mar 20 2015 *)
    Join[{1}, LinearRecurrence[{4, -4}, {3, 12}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
    Join[{1}, Table[3 2^(n - 1) n, {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
    CoefficientList[Series[(1 - x + 4 x^2)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    Vec((1-x+4*x^2)/(1-2*x)^2 + O(x^50)) \\ Michel Marcus, Mar 21 2015
    
  • PARI
    a(n) = if(n==0, 1, 3*n*2^(n-1)); \\ Altug Alkan, May 16 2018
    

Formula

a(0)=1, a(n) = 3*n*2^(n-1) for n>0.
a(0)=1, a(1)=3, a(2)=12, a(n) = 4*a(n-1)-4*a(n-2) for n>2.
a(n) = Sum_{k=0..n} A167666(n,k) * 2^k.
G.f.: 1 + 3*x*G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+1)/(2*k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(0)=1, a(n) = Sum_{i=0..n} binomial(n,i) * (2n-i). - Wesley Ivan Hurt, Mar 20 2015

A130779 a(0)=a(1)=1, a(2)=2, a(n)=0 for n >= 3.

Original entry on oeis.org

1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Curtz, Jul 14 2007

Keywords

Comments

Inverse binomial transform of A002522. - R. J. Mathar, Jun 13 2008
Multiplicative with a(2)=2, a(2^e)=0 if e>1, a(p^e)=0 for odd prime p if e>=1. Dirichlet g.f. 1+2^(1-s). - R. J. Mathar, Jun 28 2011
a(n-1) is the determinant of the symmetric n X n matrix M(i,j) = rad(gcd(i,j)) for 1 <= i, j <= n, where rad(n) is the largest squarefree number dividing n (A007947). - Amiram Eldar, Jul 19 2019

References

  • J. Sándor and B. Crstici, Handbook of Number Theory II, Kluwer, 2004, p. 265.

Crossrefs

Programs

Formula

G.f.: 1+x+2x^2.
a(n) = A167666(n,0). - Philippe Deléham, Feb 18 2012
a(n) = n! mod 3. - Charles Kusniec, Jan 25 2020

A167682 Expansion of (1 - 2*x + 5*x^2) / (1 - 3*x)^2.

Original entry on oeis.org

1, 4, 20, 84, 324, 1188, 4212, 14580, 49572, 166212, 551124, 1810836, 5904900, 19131876, 61647156, 197696052, 631351908, 2008846980, 6370914708, 20145865428, 63536960196, 199908972324, 627621192180, 1966546402164, 6150687683364, 19205208480708
Offset: 0

Views

Author

Philippe Deléham, Nov 09 2009

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(1-2x+5*x^2)/(1-3x)^2,{x,0,40}],x] (* or *) Join[{1},LinearRecurrence[{6,-9},{4,20},40]] (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    Vec((1-2*x+5*x^2) / (1-3*x)^2 + O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(0)=1, a(1)=4, a(2)=20, a(n) = 6*a(n-1) - 9*a(n-2) for n>2.
a(n) = 4*A081038(n-1) for n>0.
a(n) = Sum_{k=0..n} A167666(n,k)*3^k.
a(n) = 3^(n - 2)*(8*n + 4) for n>0. - Colin Barker, Jan 21 2017

Extensions

Corrected and extended by Harvey P. Dale, Oct 20 2011
PARI code corrected by Colin Barker, Jan 21 2017
Showing 1-3 of 3 results.