cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229534 T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 1, 0, 2, 4, 0, 6, 8, 20, 0, 16, 36, 58, 84, 0, 40, 112, 361, 356, 324, 0, 96, 368, 1588, 3064, 2038, 1188, 0, 224, 1152, 7460, 19276, 24344, 11184, 4212, 0, 512, 3568, 33136, 130854, 221096, 185808, 59626, 14580, 0, 1152, 10880, 146300, 833108, 2171944
Offset: 1

Views

Author

R. H. Hardin, Sep 25 2013

Keywords

Comments

Table starts
.0.....1......2........6........16.........40...........96...........224
.0.....4......8.......36.......112........368.........1152..........3568
.0....20.....58......361......1588.......7460........33136........146300
.0....84....356.....3064.....19276.....130854.......833108.......5305746
.0...324...2038....24344....221096....2171944.....19965136.....184319130
.0..1188..11184...185808...2451728...34811238....463976296....6218438820
.0..4212..59626..1379512..26566266..544403948..10551803060..205336122417
.0.14580.311260.10036352.283010776.8359264560.236116939092.6668992563052

Examples

			Some solutions for n=3, k=4:
  0 1 0 1     0 1 0 2     0 1 0 0     0 1 0 0     0 1 2 0
  0 2 0 2     1 2 0 2     0 1 2 1     2 1 2 1     0 1 2 0
  2 1 0 1     1 2 0 2     2 1 2 1     0 1 2 1     2 1 0 1
		

Crossrefs

Column 2 is A167682(n-1).
Row 1 is A057711(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = 6*a(n-1) - 9*a(n-2) for n > 3.
k=3: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4) for n > 5.
k=4: a(n) = 14*a(n-1) - 57*a(n-2) + 56*a(n-3) - 16*a(n-4) for n > 5.
k=5: [order 12] for n > 13.
k=6: [order 18] for n > 19.
k=7: [order 38] for n > 39.
Empirical for row n:
n=1: a(n) = 4*a(n-1) - 4*a(n-2) for n > 4.
n=2: a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4).
n=3: a(n) = 6*a(n-1) - a(n-2) - 28*a(n-3) - 4*a(n-4) + 16*a(n-5) - 4*a(n-6) for n > 8.
n=4: [order 12] for n > 14.
n=5: [order 20] for n > 22.
n=6: [order 46] for n > 48.
n=7: [order 92] for n > 94.

A229460 T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally and vertically with exactly one mistake and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 1, 1, 2, 4, 2, 6, 20, 20, 6, 16, 84, 140, 84, 16, 40, 324, 863, 863, 324, 40, 96, 1188, 4962, 7940, 4962, 1188, 96, 224, 4212, 27313, 68790, 68790, 27313, 4212, 224, 512, 14580, 145932, 573342, 903332, 573342, 145932, 14580, 512, 1152, 49572, 763031
Offset: 1

Views

Author

R. H. Hardin, Sep 24 2013

Keywords

Comments

Table starts
...0.....1......2........6.........16..........40............96.............224
...1.....4.....20.......84........324........1188..........4212...........14580
...2....20....140......863.......4962.......27313........145932..........763031
...6....84....863.....7940......68790......573342.......4651079........36985536
..16...324...4962....68790.....903332....11451686.....141595454......1718447506
..40..1188..27313...573342...11451686...221410052....4182294415.....77626332302
..96..4212.145932..4651079..141595454..4182294415..120864516084...3435347473308
.224.14580.763031.36985536.1718447506.77626332302.3435347473308.149656305350148

Examples

			Some solutions for n=3, k=4:
  0 1 0 2     0 1 0 2     0 1 0 2     0 1 0 2     0 1 0 2
  2 1 2 1     2 1 2 0     2 2 1 0     1 0 2 1     1 0 2 0
  0 2 1 2     1 2 1 2     0 1 2 1     2 0 1 0     1 2 0 2
		

Crossrefs

Column 1 is A057711(n-1).
Column 2 is A167682(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) - 4*a(n-2) for n > 4.
k=2: a(n) = 6*a(n-1) - 9*a(n-2) for n > 3.
k=3: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4).
k=4: [order 6] for n > 7.
k=5: [order 10].
k=6: [order 14] for n > 15.
k=7: [order 26].
k=8: [order 38] for n > 39.

A167666 Triangle read by rows given by [1,1,-4,2,0,0,0,0,0,0,0,...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 0, 4, 5, 1, 0, 0, 6, 7, 1, 0, 0, 0, 8, 9, 1, 0, 0, 0, 0, 10, 11, 1, 0, 0, 0, 0, 0, 12, 13, 1, 0, 0, 0, 0, 0, 0, 14, 15, 1, 0, 0, 0, 0, 0, 0, 0, 16, 17, 1, 0, 0, 0, 0, 0, 0, 0, 0, 18, 19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 23, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2009

Keywords

Comments

Row sums = A111284(n+1), Diagonal sums = A109613(n).

Examples

			Triangle begins :
1 ;
1, 1 ;
2, 3, 1 ;
0, 4, 5, 1 ;
0, 0, 6, 7, 1 ;
0, 0, 0, 8, 9, 1 ;
0, 0, 0, 0, 10, 11, 1 ; ...
		

Crossrefs

Formula

T(n,k) = 2*T(n-1,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = 2, T(2,1) = 3, T(3,0) = 0, T(3,1) = 4. - Philippe Deléham, Feb 18 2012
G.f.: (1+(1-y)*x+(2+y)*x^2)/(1-y*x)^2. - Philippe Deléham, Feb 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A130779(n), A111284(n+1), A167667(n), A167682(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Feb 18 2012
Showing 1-3 of 3 results.