cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A268904 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 3, 0, 12, 36, 0, 36, 168, 240, 0, 96, 696, 1584, 1344, 0, 240, 2664, 9720, 12960, 6912, 0, 576, 9720, 54936, 118584, 98496, 33792, 0, 1344, 34344, 299088, 1004184, 1347192, 715392, 159744, 0, 3072, 118584, 1585800, 8250912, 17194680, 14644152, 5038848
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2016

Keywords

Comments

Table starts
.0.......3........12..........36............96............240..............576
.0......36.......168.........696..........2664...........9720............34344
.0.....240......1584........9720.........54936.........299088..........1585800
.0....1344.....12960......118584.......1004184........8250912.........66210264
.0....6912.....98496.....1347192......17194680......214142760.......2611960344
.0...33792....715392....14644152.....282550680.....5344944120......99308573208
.0..159744...5038848...154472184....4513169016...129834259704....3679171151832
.0..737280..34712064..1594323000...70609114584..3091414865040..133712637011640
.0.3342336.235146240.16185567096.1087342615224.72488795124312.4788143315276472

Examples

			Some solutions for n=4 k=4
..1..0..0..0. .0..1..2..1. .0..1..2..1. .1..0..0..0. .2..1..0..1
..0..0..0..0. .2..2..2..2. .0..1..0..0. .0..0..1..2. .2..1..2..2
..1..1..0..0. .1..0..1..0. .2..0..1..0. .1..0..0..0. .0..1..1..0
..2..1..0..0. .1..0..1..2. .1..0..0..0. .0..1..0..0. .0..0..0..0
		

Crossrefs

Row 1 is A167667(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 8*a(n-1) -16*a(n-2)
k=3: a(n) = 12*a(n-1) -36*a(n-2)
k=4: a(n) = 18*a(n-1) -81*a(n-2) for n>3
k=5: a(n) = 30*a(n-1) -261*a(n-2) +540*a(n-3) -324*a(n-4)
k=6: a(n) = 50*a(n-1) -805*a(n-2) +4662*a(n-3) -12150*a(n-4) +14580*a(n-5) -6561*a(n-6)
k=7: [order 8]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-2)
n=2: a(n) = 6*a(n-1) -9*a(n-2) for n>4
n=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4) for n>6
n=4: [order 6] for n>12
n=5: [order 14] for n>18
n=6: [order 18] for n>26
n=7: [order 54] for n>60

A269035 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 3, 0, 12, 24, 0, 36, 48, 120, 0, 96, 216, 348, 504, 0, 240, 672, 2166, 2136, 1944, 0, 576, 2208, 9528, 18384, 12228, 7128, 0, 1344, 6912, 44760, 115656, 146064, 67104, 25272, 0, 3072, 21408, 198816, 785124, 1326576, 1114848, 357756, 87480, 0, 6912, 65280
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Table starts
.0......3.......12.........36...........96............240.............576
.0.....24.......48........216..........672...........2208............6912
.0....120......348.......2166.........9528..........44760..........198816
.0....504.....2136......18384.......115656.........785124.........4998648
.0...1944....12228.....146064......1326576.......13031664.......119790816
.0...7128....67104....1114848.....14710368......208867428......2783857776
.0..25272...357756....8277072....159397596.....3266423688.....63310818360
.0..87480..1867560...60218112...1698064656....50155587360...1416701634552
.0.297432..9593844..431354928..17853542544...759280601376..31304407671636
.0.997272.48665904.3052215072.185754411168.11364951702132.684763778434512

Examples

			Some solutions for n=4 k=4
..2..1..0..0. .0..0..1..0. .0..1..0..1. .2..0..0..1. .2..2..2..1
..0..1..0..0. .0..1..0..0. .0..0..0..1. .0..1..0..1. .1..2..2..2
..2..1..0..1. .0..1..0..0. .2..1..0..1. .2..1..0..1. .2..2..2..2
..0..0..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..0. .1..1..2..2
		

Crossrefs

Column 2 is A268633.
Row 1 is A167667(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 6*a(n-1) -9*a(n-2) for n>3
k=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4) for n>5
k=4: a(n) = 14*a(n-1) -57*a(n-2) +56*a(n-3) -16*a(n-4) for n>5
k=5: [order 12] for n>13
k=6: [order 18] for n>19
k=7: [order 38] for n>39
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-2)
n=2: a(n) = 4*a(n-1) -8*a(n-3) -4*a(n-4)
n=3: a(n) = 6*a(n-1) -a(n-2) -28*a(n-3) -4*a(n-4) +16*a(n-5) -4*a(n-6) for n>8
n=4: [order 12] for n>14
n=5: [order 20] for n>22
n=6: [order 46] for n>48
n=7: [order 92] for n>94

A268639 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or vertically adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 3, 3, 12, 24, 12, 36, 120, 120, 36, 96, 504, 840, 504, 96, 240, 1944, 5178, 5178, 1944, 240, 576, 7128, 29772, 47640, 29772, 7128, 576, 1344, 25272, 163878, 412740, 412740, 163878, 25272, 1344, 3072, 87480, 875592, 3440052, 5419992, 3440052, 875592
Offset: 1

Views

Author

R. H. Hardin, Feb 09 2016

Keywords

Comments

Table starts
....0......3........12..........36............96.............240
....3.....24.......120.........504..........1944............7128
...12....120.......840........5178.........29772..........163878
...36....504......5178.......47640........412740.........3440052
...96...1944.....29772......412740.......5419992........68710116
..240...7128....163878.....3440052......68710116......1328460312
..576..25272....875592....27906474.....849572724.....25093766490
.1344..87480...4578186...221913216...10310685036....465757993812
.3072.297432..23548164..1737860310..123340687488...8527096170390
.6912.997272.119570574.13445785116.1458578214948.154406753980596

Examples

			Some solutions for n=4 k=4
..2..0..0..0. .2..2..1..0. .0..0..0..0. .2..1..2..2. .0..1..2..2
..2..1..0..1. .2..1..0..0. .1..1..0..1. .2..2..1..0. .1..2..1..2
..1..0..1..2. .2..0..1..0. .2..2..1..2. .2..1..0..1. .2..1..0..2
..2..1..2..2. .2..1..0..1. .2..1..0..1. .1..2..1..2. .1..0..0..1
		

Crossrefs

Column 1 is A167667(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 6*a(n-1) -9*a(n-2) for n>3
k=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4)
k=4: [order 6] for n>7
k=5: [order 10]
k=6: [order 14] for n>15
k=7: [order 26]

A268774 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 3, 3, 12, 12, 12, 36, 32, 32, 36, 96, 100, 112, 100, 96, 240, 248, 446, 446, 248, 240, 576, 620, 1524, 2296, 1524, 620, 576, 1344, 1456, 5214, 10340, 10340, 5214, 1456, 1344, 3072, 3380, 17000, 46312, 64112, 46312, 17000, 3380, 3072, 6912, 7656, 54822
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Table starts
....0.....3.....12.......36........96.........240..........576..........1344
....3....12.....32......100.......248.........620.........1456..........3380
...12....32....112......446......1524........5214........17000.........54822
...36...100....446.....2296.....10340.......46312.......198114........837848
...96...248...1524....10340.....64112......387146......2258084......12951796
..240...620...5214....46312....387146.....3104544.....24222418.....185142872
..576..1456..17000...198114...2258084....24222418....255353744....2624246370
.1344..3380..54822...837848..12951796...185142872...2624246370...36091542548
.3072..7656.173244..3472210..73011192..1393319226..26623649020..491176316484
.6912.17148.541910.14245712.406925194.10357051740.266457432340.6585970939900

Examples

			Some solutions for n=4 k=4
..2..1..2..2. .1..2..2..2. .0..0..0..0. .0..1..0..1. .2..2..1..2
..1..2..2..1. .2..2..2..1. .1..0..1..0. .0..0..0..1. .2..2..2..2
..2..2..2..2. .2..1..2..2. .0..0..0..0. .0..0..0..0. .1..2..2..2
..2..1..2..1. .1..2..2..2. .1..1..0..1. .0..0..0..1. .2..1..2..2
		

Crossrefs

Column 1 is A167667(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>5
k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6) for n>8
k=4: [order 8] for n>10
k=5: [order 12] for n>14
k=6: [order 16] for n>18
k=7: [order 28] for n>30

A268798 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 3, 3, 12, 22, 12, 36, 78, 78, 36, 96, 234, 248, 234, 96, 240, 652, 950, 950, 652, 240, 576, 1714, 3384, 4800, 3384, 1714, 576, 1344, 4360, 11948, 23994, 23994, 11948, 4360, 1344, 3072, 10820, 41248, 117062, 168740, 117062, 41248, 10820, 3072, 6912, 26366
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Table starts
....0.....3......12.......36.........96.........240...........576
....3....22......78......234........652........1714..........4360
...12....78.....248......950.......3384.......11948.........41248
...36...234.....950.....4800......23994......117062........561116
...96...652....3384....23994.....168740.....1158904.......7801688
..240..1714...11948...117062....1158904....11138352.....104971262
..576..4360...41248...561116....7801688...104971262....1384570516
.1344.10820..140698..2652936...51781418...974000420...17967375416
.3072.26366..474472.12405748..339641264..8927994302..230262982692
.6912.63346.1586038.57490444.2206871084.81031120788.2921020155826

Examples

			Some solutions for n=4 k=4
..0..2..2..2. .2..1..0..0. .0..0..0..0. .0..0..0..0. .1..2..1..2
..1..2..2..1. .0..0..0..1. .0..0..0..1. .1..0..1..0. .2..2..2..2
..2..2..2..2. .1..0..0..0. .1..0..0..0. .1..0..0..1. .1..2..2..2
..2..1..2..2. .0..0..0..0. .0..1..1..0. .0..1..0..0. .2..2..1..1
		

Crossrefs

Column 1 is A167667(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) -a(n-6) for n>7
k=3: [order 10] for n>12
k=4: [order 16] for n>19
k=5: [order 26] for n>29
k=6: [order 42] for n>45
k=7: [order 68] for n>71

A167666 Triangle read by rows given by [1,1,-4,2,0,0,0,0,0,0,0,...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 0, 4, 5, 1, 0, 0, 6, 7, 1, 0, 0, 0, 8, 9, 1, 0, 0, 0, 0, 10, 11, 1, 0, 0, 0, 0, 0, 12, 13, 1, 0, 0, 0, 0, 0, 0, 14, 15, 1, 0, 0, 0, 0, 0, 0, 0, 16, 17, 1, 0, 0, 0, 0, 0, 0, 0, 0, 18, 19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 23, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2009

Keywords

Comments

Row sums = A111284(n+1), Diagonal sums = A109613(n).

Examples

			Triangle begins :
1 ;
1, 1 ;
2, 3, 1 ;
0, 4, 5, 1 ;
0, 0, 6, 7, 1 ;
0, 0, 0, 8, 9, 1 ;
0, 0, 0, 0, 10, 11, 1 ; ...
		

Crossrefs

Formula

T(n,k) = 2*T(n-1,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = 2, T(2,1) = 3, T(3,0) = 0, T(3,1) = 4. - Philippe Deléham, Feb 18 2012
G.f.: (1+(1-y)*x+(2+y)*x^2)/(1-y*x)^2. - Philippe Deléham, Feb 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A130779(n), A111284(n+1), A167667(n), A167682(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Feb 18 2012

A204206 Triangle based on (1,3/2,2) averaging array.

Original entry on oeis.org

3, 5, 7, 9, 12, 15, 17, 21, 27, 31, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 127, 129, 136, 157, 192, 227, 248, 255, 257, 265, 293, 349, 419, 475, 503, 511, 513, 522, 558, 642, 768, 894, 978, 1014, 1023, 1025, 1035, 1080, 1200, 1410, 1662, 1872
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

See A204201 for a discussion and guide to other averaging arrays.

Examples

			First six rows:
3
5...7
9...12...15
17..21...27...31
33..38...48...58...63
65..71...86...106..121..127
		

Crossrefs

Cf. A204201.

Programs

  • Mathematica
    a = 1; r = 3/2; b = 2;
    t[1, 1] = r;
    t[n_, 1] := (a + t[n - 1, 1])/2;
    t[n_, n_] := (b + t[n - 1, n - 1])/2;
    t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
    u[n_] := Table[t[n, k], {k, 1, n}]
    Table[u[n], {n, 1, 5}]    (* averaging array *)
    u = Table[3 (1/2) (1/r) 2^n*u[n], {n, 1, 12}];
    TableForm[u]   (* A204206 triangle *)
    Flatten[u]     (* A204206 sequence *)

Formula

From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A000225(n+1).
Sum_{k=1..n} T(n,k) = A167667(n).
T(n,k)=T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=3, T(2,1)=5, T(2,2)=7, T(n,k)=0 if k<1 or if k>n. (End)

A092393 Triangle read by rows: T(n,k) = (n+k)*binomial(n,k) (for k=0..n-1).

Original entry on oeis.org

1, 2, 6, 3, 12, 15, 4, 20, 36, 28, 5, 30, 70, 80, 45, 6, 42, 120, 180, 150, 66, 7, 56, 189, 350, 385, 252, 91, 8, 72, 280, 616, 840, 728, 392, 120, 9, 90, 396, 1008, 1638, 1764, 1260, 576, 153, 10, 110, 540, 1560, 2940, 3780, 3360, 2040, 810, 190, 11, 132, 715
Offset: 1

Views

Author

Benoit Cloitre, Mar 21 2004

Keywords

Examples

			Triangle starts:
1;
2, 6;
3, 12, 15;
4, 20, 36,  28;
5, 30, 70,  80,  45;
6, 42, 120, 180, 150, 66;
...
		

Crossrefs

Cf. A029635.

Programs

  • Maple
    A092393 := proc(n,k)
        (n+k)*binomial(n,k) ;
    end proc:
    seq(seq( A092393(n,k),k=0..n-1),n=1..12) ; # R. J. Mathar, Nov 02 2023
  • Mathematica
    A092393row[n_]:=Table[(n+k)Binomial[n,k],{k,0,n-1}];Array[A092393row,10]  (* Paolo Xausa, Nov 02 2023 *)
  • PARI
    T(n,k)=binomial(n,k)*(n+k)

Formula

First column = positive integers;
second column = A002378;
third column = A077414;
main diagonal (i.e., T(n,n) = (n+n)*binomial(n,n) = 2n, which is not included in this sequence) = even integers;
second diagonal = A000384.
Row sums = 1, 8, 30, 88, 230,... = A167667(n)-2n. - R. J. Mathar, Nov 02 2023

A203150 (n-1)-st elementary symmetric function of the first n terms of (1,2,1,2,1,2,1,2,1,2,...)=A000034.

Original entry on oeis.org

1, 3, 5, 12, 16, 36, 44, 96, 112, 240, 272, 576, 640, 1344, 1472, 3072, 3328, 6912, 7424, 15360, 16384, 33792, 35840, 73728, 77824, 159744, 167936, 344064, 360448, 737280, 770048, 1572864, 1638400, 3342336, 3473408, 7077888, 7340032
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Examples

			Let esf abbreviate "elementary symmetric function".  Then
0th esf of {1}:  1
1st esf of {1,2}:  1+2=3
2nd esf of {1,2,1} is 1*2+1*1+2*1=5
		

Crossrefs

Cf. A000034, A167667 (bisection?), A053220 (bisection?)

Programs

  • Mathematica
    f[k_] := 1 + Mod[k + 1, 2];
    t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 33}]  (* A203150 *)

Formula

Empirical G.f.: x*(1+3*x+x^2)/(1-4*x^2+4*x^4). - Colin Barker, Jan 03 2012
Conjecture: a(n) = (6*r*n+(1+3*(1-r)*n)*(1-(-1)^n))*r^(n-1)/8, where r=sqrt(2). - Bruno Berselli, Jan 03 2011

A236538 Triangle read by rows: T(n,k) = (n+1)*2^(n-2)+(k-1)*2^(n-1) for 1 <= k <= n.

Original entry on oeis.org

1, 3, 5, 8, 12, 16, 20, 28, 36, 44, 48, 64, 80, 96, 112, 112, 144, 176, 208, 240, 272, 256, 320, 384, 448, 512, 576, 640, 576, 704, 832, 960, 1088, 1216, 1344, 1472, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 2816, 3328, 3840, 4352, 4864, 5376
Offset: 1

Views

Author

Fedor Igumnov, Jan 28 2014

Keywords

Comments

1, 9, 45, 161, 497, 1409, ... is the sequence of perimeters (sum of border elements) of the triangle.
1, 5, 80, 3520, 394240, 107233280, 68629299200, ... is the sequence of determinants of the triangle.
Only the first three terms are odd.

Examples

			Triangle begins:
================================================
\k |    1     2     3     4     5     6     7
n\ |
================================================
1  |    1;
2  |    3,    5;
3  |    8,   12,   16;
4  |   20,   28,   36,   44;
5  |   48,   64,   80,   96,  112;
6  |  112,  144,  176,  208,  240,  272;
7  |  256,  320,  384,  448,  512,  576,  640;
...
		

Crossrefs

Cf. A001792 (column 1), A053220 (right border). Also:
A014477, row sums;
A036826, partial sums;
A058962, central elements in odd rows;
A045623, second column;
A045891, third column;
A034007, fourth column;
A167667, subdiagonal;
A130129, second subdiagonal.

Programs

  • C
    int a(int n, int k) {return (n+1)*pow(2,n-2)+(k-1)*pow(2,n-1);}
    
  • Magma
    /* As triangle: */ [[(n+1)*2^(n-2)+(k-1)*2^(n-1): k in [1..n]]: n in [1..10]]; // Bruno Berselli, Jan 28 2014
  • Mathematica
    t[n_, k_] := (n + 1)*2^(n - 2) + (k - 1)*2^(n - 1); Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Bruno Berselli, Jan 28 2014 *)

Formula

T(n,k) = T(n-1,k) + T(n-1,k+1).
Sum_{k=1..n} T(n,k) = n^2*2^(n-1) = A014477(n-1).

Extensions

More terms from Bruno Berselli, Jan 28 2014
Showing 1-10 of 12 results. Next