A268904 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
0, 3, 0, 12, 36, 0, 36, 168, 240, 0, 96, 696, 1584, 1344, 0, 240, 2664, 9720, 12960, 6912, 0, 576, 9720, 54936, 118584, 98496, 33792, 0, 1344, 34344, 299088, 1004184, 1347192, 715392, 159744, 0, 3072, 118584, 1585800, 8250912, 17194680, 14644152, 5038848
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..0..0..0. .0..1..2..1. .0..1..2..1. .1..0..0..0. .2..1..0..1 ..0..0..0..0. .2..2..2..2. .0..1..0..0. .0..0..1..2. .2..1..2..2 ..1..1..0..0. .1..0..1..0. .2..0..1..0. .1..0..0..0. .0..1..1..0 ..2..1..0..0. .1..0..1..2. .1..0..0..0. .0..1..0..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..287
Crossrefs
Row 1 is A167667(n-1).
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 8*a(n-1) -16*a(n-2)
k=3: a(n) = 12*a(n-1) -36*a(n-2)
k=4: a(n) = 18*a(n-1) -81*a(n-2) for n>3
k=5: a(n) = 30*a(n-1) -261*a(n-2) +540*a(n-3) -324*a(n-4)
k=6: a(n) = 50*a(n-1) -805*a(n-2) +4662*a(n-3) -12150*a(n-4) +14580*a(n-5) -6561*a(n-6)
k=7: [order 8]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-2)
n=2: a(n) = 6*a(n-1) -9*a(n-2) for n>4
n=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4) for n>6
n=4: [order 6] for n>12
n=5: [order 14] for n>18
n=6: [order 18] for n>26
n=7: [order 54] for n>60
Comments