A238146 Triangle read by rows: T(n,k) is coefficient of x^(n-k) in consecutive prime rooted polynomial of degree n, P(x) = Product_{k=1..n} (x-p(k)) = 1*x^n + T(n,1)*x^(n-1)+ ... + T(n,k-1)*x + T(n,k), for 1 <= k <= n.
-2, -5, 6, -10, 31, -30, -17, 101, -247, 210, -28, 288, -1358, 2927, -2310, -41, 652, -5102, 20581, -40361, 30030, -58, 1349, -16186, 107315, -390238, 716167, -510510, -77, 2451, -41817, 414849, -2429223, 8130689, -14117683, 9699690
Offset: 1
Examples
Triangle begins: ================================================ \k | 1 2 3 4 5 6 7 n\ | ================================================ 1 | -2; 2 | -5, 6; 3 | -10, 31, -30; 4 | -17, 101, -247, 210; 5 | -28, 288, -1358, 2927, -2310; 6 | -41, 652, -5102, 20581, -40361, 30030; 7 | -58,1349,-16186,107315,-390238,716167,-510510; So equation x^7 -58*x^6 + 1349*x^5 -16186*x^4 + 107315*x^3 -390238*x^2+ 716167*x -510510 = 0 has 7 consecutive prime roots: 2,3,5,7,11,13,17
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Fedor Igumnov, T(n,k) for n = 1..50
Crossrefs
Programs
-
Maple
T:= n-> (p-> seq(coeff(p, x, n-i), i=1..n))(mul(x-ithprime(i), i=1..n)): seq(T(n), n=1..10); # Alois P. Heinz, Aug 18 2019
-
Mathematica
a = 1 For [i = 1, i < 10, i++, a *= (x - Prime[i]); Print[Drop[Reverse[CoefficientList[Expand[a], x]], 1]] ]
Extensions
Name edited by Alois P. Heinz, Aug 18 2019
Comments