cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Fedor Igumnov

Fedor Igumnov's wiki page.

Fedor Igumnov has authored 2 sequences.

A238146 Triangle read by rows: T(n,k) is coefficient of x^(n-k) in consecutive prime rooted polynomial of degree n, P(x) = Product_{k=1..n} (x-p(k)) = 1*x^n + T(n,1)*x^(n-1)+ ... + T(n,k-1)*x + T(n,k), for 1 <= k <= n.

Original entry on oeis.org

-2, -5, 6, -10, 31, -30, -17, 101, -247, 210, -28, 288, -1358, 2927, -2310, -41, 652, -5102, 20581, -40361, 30030, -58, 1349, -16186, 107315, -390238, 716167, -510510, -77, 2451, -41817, 414849, -2429223, 8130689, -14117683, 9699690
Offset: 1

Author

Fedor Igumnov, Feb 18 2014

Keywords

Comments

The coefficient of first polynomial term with highest degree is always 1.
Each number in triangle is the sum of radicals of integers.
The absolute value of the entry in the k-th column is the k-th elementary symmetric function of the first n+(k-1) primes.

Examples

			Triangle begins:
================================================
\k |    1     2     3     4     5     6     7
n\ |
================================================
1  |  -2;
2  |  -5,   6;
3  |  -10,  31,   -30;
4  |  -17, 101,  -247,  210;
5  |  -28, 288, -1358,  2927,  -2310;
6  |  -41, 652, -5102, 20581, -40361, 30030;
7  |  -58,1349,-16186,107315,-390238,716167,-510510;
So equation x^7 -58*x^6 + 1349*x^5 -16186*x^4 + 107315*x^3 -390238*x^2+ 716167*x -510510 = 0 has 7 consecutive prime roots: 2,3,5,7,11,13,17
		

Crossrefs

Cf. A007504 (abs of column 1) A002110(abs of right border). Also:
A024447 is the abs of column 2;
A024448 is the abs of column 3;
A024449 is the abs of column 4;
A006939 is the determinant of triangle matrix, considering T(n,k) k>n = 0;
A007947 = radicals of integers.

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, n-i), i=1..n))(mul(x-ithprime(i), i=1..n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, Aug 18 2019
  • Mathematica
    a = 1
    For [i = 1, i < 10, i++,
    a *= (x - Prime[i]);
    Print[Drop[Reverse[CoefficientList[Expand[a], x]], 1]]
    ]

Extensions

Name edited by Alois P. Heinz, Aug 18 2019

A236538 Triangle read by rows: T(n,k) = (n+1)*2^(n-2)+(k-1)*2^(n-1) for 1 <= k <= n.

Original entry on oeis.org

1, 3, 5, 8, 12, 16, 20, 28, 36, 44, 48, 64, 80, 96, 112, 112, 144, 176, 208, 240, 272, 256, 320, 384, 448, 512, 576, 640, 576, 704, 832, 960, 1088, 1216, 1344, 1472, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 2816, 3328, 3840, 4352, 4864, 5376
Offset: 1

Author

Fedor Igumnov, Jan 28 2014

Keywords

Comments

1, 9, 45, 161, 497, 1409, ... is the sequence of perimeters (sum of border elements) of the triangle.
1, 5, 80, 3520, 394240, 107233280, 68629299200, ... is the sequence of determinants of the triangle.
Only the first three terms are odd.

Examples

			Triangle begins:
================================================
\k |    1     2     3     4     5     6     7
n\ |
================================================
1  |    1;
2  |    3,    5;
3  |    8,   12,   16;
4  |   20,   28,   36,   44;
5  |   48,   64,   80,   96,  112;
6  |  112,  144,  176,  208,  240,  272;
7  |  256,  320,  384,  448,  512,  576,  640;
...
		

Crossrefs

Cf. A001792 (column 1), A053220 (right border). Also:
A014477, row sums;
A036826, partial sums;
A058962, central elements in odd rows;
A045623, second column;
A045891, third column;
A034007, fourth column;
A167667, subdiagonal;
A130129, second subdiagonal.

Programs

  • C
    int a(int n, int k) {return (n+1)*pow(2,n-2)+(k-1)*pow(2,n-1);}
    
  • Magma
    /* As triangle: */ [[(n+1)*2^(n-2)+(k-1)*2^(n-1): k in [1..n]]: n in [1..10]]; // Bruno Berselli, Jan 28 2014
  • Mathematica
    t[n_, k_] := (n + 1)*2^(n - 2) + (k - 1)*2^(n - 1); Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Bruno Berselli, Jan 28 2014 *)

Formula

T(n,k) = T(n-1,k) + T(n-1,k+1).
Sum_{k=1..n} T(n,k) = n^2*2^(n-1) = A014477(n-1).

Extensions

More terms from Bruno Berselli, Jan 28 2014