A260613
Triangle read by rows: T(n, k) = coefficient of x^(n-k) in Product_{m=1..n} (x+prime(m)); 0 <= k <= n, n >= 0.
Original entry on oeis.org
1, 1, 2, 1, 5, 6, 1, 10, 31, 30, 1, 17, 101, 247, 210, 1, 28, 288, 1358, 2927, 2310, 1, 41, 652, 5102, 20581, 40361, 30030, 1, 58, 1349, 16186, 107315, 390238, 716167, 510510, 1, 77, 2451, 41817, 414849, 2429223, 8130689, 14117683, 9699690
Offset: 0
The triangle starts:
Row 0: 1;
Row 1: 1, 2; Coefficients of x + 2.
Row 2: 1, 5, 6; Coefficients of (x+2)(x+3) = x^2 + 5x + 6.
Row 3: 1, 10, 31, 30; Coeff's of (x+2)(x+3)(x+5) = x^3 + 10x^2 + 31x + 30.
Row 5: 1, 17, 101, 247, 210;
Row 6: 1, 28, 288, 1358, 2927, 2310;
...
-
T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n))(mul(x+ithprime(i), i=1..n)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 18 2019
-
row[n_] := CoefficientList[Product[x + Prime[m], {m, 1, n}] + O[x]^(n+1), x] // Reverse;
row /@ Range[0, 8] // Flatten (* Jean-François Alcover, Sep 16 2019 *)
-
tabl(nn) = {for (n=0, nn, polp = prod(k=1, n, x+prime(k)); forstep (k= n, 0, -1, print1(polcoeff(polp, k), ", ");); print(););} \\ Michel Marcus, Aug 10 2015
A309802
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+2} (prime(i)*x-1).
Original entry on oeis.org
1, 10, 101, 1358, 20581, 390238, 8130689, 201123530, 6166988769, 201097530280, 7754625545261, 329758834067168, 14671637258193181, 711027519310719868, 38706187989054920001, 2338431642812927422310, 145908145906128304198449, 9976861293427674211625032
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309803,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+2), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 18 2019
A309803
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+3} (prime(i)*x-1).
Original entry on oeis.org
-1, -17, -288, -5102, -107315, -2429223, -64002818, -2057205252, -69940351581, -2788890538777, -122099137635118, -5580021752377242, -276932659619923555, -15388458479166668283, -946625238259888348698, -60082571176666116692888, -4171440414742758122621945
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309802,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+3), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2019
A309804
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+4} (prime(i)*x-1).
Original entry on oeis.org
1, 28, 652, 16186, 414849, 11970750, 411154568, 14802996860, 617651235401, 28112591190218, 1330940558814492, 68134228016658366, 3888046744502816953, 244783216404832868510, 15878401438954693327808, 1123935467586630569656024, 83970858613393528568199649
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309802,
A309803,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+4), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2019
-
a[n_] := CoefficientList[Series[Product[Prime[i]*x - 1, {i, 1, n+4}], {x, 0, 25}], x] [[n+1]]; Array[a, 17, 0] (* Amiram Eldar, Aug 24 2019 *)
-
a(n) = polcoef(prod(i=1, n+4, prime(i)*x-1), n); \\ Michel Marcus, Aug 25 2019
A357176
a(n) is the least prime that is the n-th elementary symmetric function of the first k primes for some k.
Original entry on oeis.org
2, 31, 2101534937, 2927, 40361, 39075401846390482295581, 226026998201956974105518542793548663, 617651235401, 4325269278391458399931853204730438563, 12894795842691356733422939, 745410787149030809096434692201049325037186561467959704761393689387
Offset: 1
a(4) = 2927 = 2*3*5*7 + 2*3*5*11 + 2*3*7*11 + 2*5*7*11 + 3*5*7*11 is the 4th symmetric function of the first 5 primes (2,3,5,7,11) and is prime.
Showing 1-5 of 5 results.
Comments