cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alexey V. Bazhin

Alexey V. Bazhin's wiki page.

Alexey V. Bazhin has authored 4 sequences.

A309804 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+4} (prime(i)*x-1).

Original entry on oeis.org

1, 28, 652, 16186, 414849, 11970750, 411154568, 14802996860, 617651235401, 28112591190218, 1330940558814492, 68134228016658366, 3888046744502816953, 244783216404832868510, 15878401438954693327808, 1123935467586630569656024, 83970858613393528568199649
Offset: 0

Author

Alexey V. Bazhin, Aug 17 2019

Keywords

Programs

  • Maple
    a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+4), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2019
  • Mathematica
    a[n_] := CoefficientList[Series[Product[Prime[i]*x - 1, {i, 1, n+4}], {x, 0, 25}], x] [[n+1]]; Array[a, 17, 0] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    a(n) = polcoef(prod(i=1, n+4, prime(i)*x-1), n); \\ Michel Marcus, Aug 25 2019

Formula

a(n) = [x^n] Product_{i=1..n+4} (prime(i)*x-1).
a(n) = abs(A070918(n+4,4)).
a(n) = abs(A238146(n+4,n)) for n>0.
a(n) = A260613(n+4,n).

A309803 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+3} (prime(i)*x-1).

Original entry on oeis.org

-1, -17, -288, -5102, -107315, -2429223, -64002818, -2057205252, -69940351581, -2788890538777, -122099137635118, -5580021752377242, -276932659619923555, -15388458479166668283, -946625238259888348698, -60082571176666116692888, -4171440414742758122621945
Offset: 0

Author

Alexey V. Bazhin, Aug 17 2019

Keywords

Programs

  • Maple
    a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+3), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2019

Formula

a(n) = [x^n] Product_{i=1..n+3} (prime(i)*x-1).
a(n) = -abs(A070918(n+3,3)).
a(n) = -abs(A238146(n+3,n)) for n>0.
a(n) = -A260613(n+3,n).

A309802 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+2} (prime(i)*x-1).

Original entry on oeis.org

1, 10, 101, 1358, 20581, 390238, 8130689, 201123530, 6166988769, 201097530280, 7754625545261, 329758834067168, 14671637258193181, 711027519310719868, 38706187989054920001, 2338431642812927422310, 145908145906128304198449, 9976861293427674211625032
Offset: 0

Author

Alexey V. Bazhin, Aug 17 2019

Keywords

Programs

  • Maple
    a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+2), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 18 2019

Formula

a(n) = [x^n] Product_{i=1..n+2} (prime(i)*x-1).
a(n) = abs(A070918(n+2,2)).
a(n) = abs(A238146(n+2,n)) for n>0.
a(n) = A260613(n+2,n).

A308665 Cardinality of the shortcut set of the multiplicative group of integers modulo the n-th primorial.

Original entry on oeis.org

1, 2, 4, 48, 384, 2304, 4608, 18432, 552960, 19906560, 796262400, 33443020800, 66886041600, 267544166400, 535088332800, 32105299968000, 2118949797888000, 148326485852160000, 10679506981355520000, 833001544545730560000, 1666003089091461120000, 146608271840048578560000
Offset: 3

Author

Alexey V. Bazhin, Jun 15 2019

Keywords

Comments

{R(1),...,R(phi(prime(n)#))} = {(prime(n)#/2 +- {R(1),...,R(k)}*2^{1,2,...,z}) mod prime(n)#}.
The formula is used for the compressed representation of the set of the multiplicative group of integers modulo prime(n)#. This is a new formula in number theory. {R(1),...,R(k)} is the shortcut set of the multiplicative group of integers modulo prime(n)# (or compressed representation of the set of the multiplicative group of integers modulo prime(n)#).

Examples

			First example:
Let R = {1, 7, 11, 13, 17, 19, 23, 29} be the set of the multiplicative group of integers modulo 30 (or it is the set of positive integers less than 2*3*5 and prime to 2*3*5, or it is the reduced residue system for the 3rd primorial number 30 = A002110(3)).
The cardinality of |R| is equal to 8 elements, 8 = A005867(3).
The set {1} is the shortcut set of the multiplicative group of integers modulo 30.
The cardinality of |{1}| = 1, i.e., a(1) = 1.
R = { (30/2 +- {1}*2^{1, ..., 4}) mod 30 } = {(30/2 +- {1}*2^{1,2,3,4}) mod 30}={(15+2^1) mod 30, (15-2^1) mod 30,(15+2^2) mod 30, (15-2^2) mod 30, (15+2^3) mod 30, (15-2^3) mod 30, (15+2^4) mod 30, (15-2^4) mod 30} = {1,7,11,13,17,19,23,29},
where 30 = A002110(3), 4 = A155747(2), |R| = A005867(3).
4 is the smallest number m with the property that 2^m-1 is divisible by the first n odd primes.
Second example:
Let R = {1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209} be the set of the multiplicative group of integers modulo 210 (or it is the set of positive integers less than 2*3*5*7 and prime to 2*3*5*7, or it is the reduced residue system for the 4th primorial number 210 = A002110(4)).
The cardinality of |R| is equal to 48 elements, 48 = A005867(5).
The set {1, 11} is the shortcut set of the multiplicative group of integers modulo 210.
The cardinality of |{1, 11}| = 2, i.e., a(2) = 2.
R = { ( 210/2 +- {1, 11}*2 ^{1..12}) mod 210 }, where 210 = A002110(4), 12 = A155747(3), |R| = A005867(4).
12 is the smallest number m with the property that 2^m-1 is divisible by the first n odd primes.
General case:
R = {R(1), ..., R(phi(prime(n)#))},
R = {(prime(n)#/2 +- {R(1),R(2),...,R(k)}*2^{1,2,...,z}) mod prime(n)#}, where prime(n)# is the product of the first n primes, i.e., it is A002110(n); phi is Euler's totient function, which counts the positive integers up to a given argument that are relatively prime to the argument, in our case phi(prime(n)#) is A005867;
R is the set of the multiplicative group of integers modulo prime(n)#;
z is a term of A155747.
k is a term of a(n).
R(1) <= R(k) < R(phi(prime(n)#)).
Table:
+-----+-----------+----------------+---------+------+
|  n  | A002110   | A005867        | A155747 | a(n) |
|     | prime(n)# | phi(prime(n)#) | z       | k    |
+-----+-----------+----------------+---------+------+
|  0  |        1  |          1     |   -     |    - |
|  1  |        2  |          1     |   -     |    - |
|  2  |        6  |          2     |   2     |    - |
|  3  |       30  |          8     |   4     |    1 |
|  4  |      210  |         48     |  12     |    2 |
|  5  |     2310  |        480     |  60     |    4 |
|  6  |    30030  |       5760     |  60     |   48 |
|  7  |   510510  |      92160     | 120     |  384 |
|  8  |  9699690  |    1658880     | 360     | 2304 |
| ..  |      ...  |        ...     | ...     |  ... |
		

Crossrefs

Programs

  • PARI
    f(n) = prod(k=1, n, prime(k)-1); \\ A005867
    g(n) = lcm(vector(n, k, znorder(Mod(2, prime(k+1))))); \\ A155747
    a(n) = f(n+2)/(g(n+1)*2); \\ Michel Marcus, Jun 25 2019

Formula

a(n) = A005867(n+2)/(2*A155747(n+1)).
If {R(1),...,R(phi(prime(n)#))} = {(prime(n)#/2 +- {R(1),...,R(k)}*2^{1,2,...,z}) mod prime(n)#} then a(n) = k.