cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309802 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+2} (prime(i)*x-1).

Original entry on oeis.org

1, 10, 101, 1358, 20581, 390238, 8130689, 201123530, 6166988769, 201097530280, 7754625545261, 329758834067168, 14671637258193181, 711027519310719868, 38706187989054920001, 2338431642812927422310, 145908145906128304198449, 9976861293427674211625032
Offset: 0

Views

Author

Alexey V. Bazhin, Aug 17 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+2), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 18 2019

Formula

a(n) = [x^n] Product_{i=1..n+2} (prime(i)*x-1).
a(n) = abs(A070918(n+2,2)).
a(n) = abs(A238146(n+2,n)) for n>0.
a(n) = A260613(n+2,n).

A309803 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+3} (prime(i)*x-1).

Original entry on oeis.org

-1, -17, -288, -5102, -107315, -2429223, -64002818, -2057205252, -69940351581, -2788890538777, -122099137635118, -5580021752377242, -276932659619923555, -15388458479166668283, -946625238259888348698, -60082571176666116692888, -4171440414742758122621945
Offset: 0

Views

Author

Alexey V. Bazhin, Aug 17 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+3), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2019

Formula

a(n) = [x^n] Product_{i=1..n+3} (prime(i)*x-1).
a(n) = -abs(A070918(n+3,3)).
a(n) = -abs(A238146(n+3,n)) for n>0.
a(n) = -A260613(n+3,n).
Showing 1-2 of 2 results.