A111284 Number of permutations of [n] avoiding the patterns {2143, 2341, 2413, 2431, 3142, 3241, 3412, 3421, 4123, 4213, 4231, 4321, 4132, 4312}; number of strong sorting classes based on 2143.
1, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 1
References
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb. 12 (2005) R31
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Mathematica
Table[If[n == 1, 1, 4n - 6], {n, 60}] (* Robert G. Wilson v, Nov 04 2005 *)
Formula
a(n) = 4*n-6, n>=2.
a(n) = A016825(n-2), n>1. - R. J. Mathar, Aug 18 2008
G.f.: x(1+3x^2)/(1-x)^2. - R. J. Mathar, Nov 10 2008
a(n^2 - 2n + 3)/2 = Sum_{i=1..n} a(i). - Ivan N. Ianakiev, Apr 24 2013
a(n) = 2*a(n-1) - a(n-2), n>3. - Rick L. Shepherd, Jul 06 2017
E.g.f.: 3*(x + 2) + exp(x)*(4*x - 6). - Stefano Spezia, Feb 02 2023
Comments