A006022 Sprague-Grundy (or Nim) values for the game of Maundy cake on an n X 1 sheet.
0, 1, 1, 3, 1, 4, 1, 7, 4, 6, 1, 10, 1, 8, 6, 15, 1, 13, 1, 16, 8, 12, 1, 22, 6, 14, 13, 22, 1, 21, 1, 31, 12, 18, 8, 31, 1, 20, 14, 36, 1, 29, 1, 34, 21, 24, 1, 46, 8, 31, 18, 40, 1, 40, 12, 50, 20, 30, 1, 51, 1, 32, 29, 63, 14, 45, 1, 52, 24, 43, 1, 67, 1, 38, 31, 58, 12, 53, 1
Offset: 1
Keywords
Examples
For n=24, s(24) = 1/2 + 1/4 + 1/8 + 1/24 = 11/12, so a(24) = 24*11/12 = 22.
References
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 28, 53.
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Second Edition, Vol. 1, A K Peters, 2001, pp. 27, 51.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Jonathan Blanchette and Robert Laganière, A Curious Link Between Prime Numbers, the Maundy Cake Problem and Parallel Sorting, arXiv:1910.11749 [cs.DS], 2019.
Crossrefs
Programs
-
Haskell
a006022 1 = 0 a006022 n = (+ 1) $ sum $ takeWhile (> 1) $ iterate (\x -> x `div` a020639 x) (a032742 n) -- Reinhard Zumkeller, Jun 03 2012
-
Maple
P:=proc(n) local FM: FM:=ifactors(n)[2]: seq(seq(FM[j][1], k=1..FM[j][2]), j=1..nops(FM)) end: # A027746 s:=proc(n) local i,t,b; global P;t:=0; b:=1; for i in [P(n)] do b:=b*i; t:=t+1/b; od; t; end; # A322034/A322035 A006022 := n -> if n = 1 then 0 else n*s(n); fi; # N. J. A. Sloane, Nov 28 2018
-
Mathematica
Nest[Function[{a, n}, Append[a, Max@ Map[# a[[n/#]] + 1 &, Rest@ Divisors@ n]]] @@ {#, Length@ # + 1} &, {0, 1}, 77] (* Michael De Vlieger, Nov 23 2018 *)
-
PARI
lista(nn) = {my(v = vector(nn)); for (n=1, nn, if (n>1, my(m = 0); fordiv (n, d, if (d>1, m = max(m, d*v[n/d]+1))); v[n] = m;); print1(v[n], ", "););} \\ Michel Marcus, Nov 25 2018
Formula
a(n) = n * Sum_{k=1..N} (1/(p1^m1*p2^m2*...*pk^mk)) * (pk^mk-1)/(pk-1) for n>=2, where pk is the k-th distinct prime factor of n, N is the number of distinct prime factors of n, and mk is the multiplicity of pk occurring in n. To prove this, expand the factors in Theorem 1 and use the geometrical series identity. - Jonathan Blanchette, Nov 01 2019
From Antti Karttunen, Apr 12 2020: (Start)
a(n) = Sum_{k=1..bigomega(n)} F^k(n), where F^k(n) is the k-th iterate of F(n) = A032742(n). - Ridouane Oudra, Jan 26 2024
Extensions
Edited and extended by Christian G. Bower, Oct 18 2002
Entry revised by N. J. A. Sloane, Nov 28 2018
Comments