cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A110185 Coefficients of x in the partial quotients of the continued fraction expansion exp(1/x) = [1, x - 1/2, 12*x, 5*x, 28*x, 9*x, 44*x, 13*x, ...]. The partial quotients all have the form a(n)*x except the constant term of 1 and the initial partial quotient which equals (x - 1/2).

Original entry on oeis.org

0, 1, 12, 5, 28, 9, 44, 13, 60, 17, 76, 21, 92, 25, 108, 29, 124, 33, 140, 37, 156, 41, 172, 45, 188, 49, 204, 53, 220, 57, 236, 61, 252, 65, 268, 69, 284, 73, 300, 77, 316, 81, 332, 85, 348, 89, 364, 93, 380, 97, 396, 101, 412, 105, 428, 109, 444, 113, 460, 117, 476
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2005

Keywords

Comments

Simple continued fraction expansion of 2*(e - 1)/(e + 1) = 2*tanh(1/2) = 1/(1 + 1/(12 + 1/(5 + 1/(28 + ...)))). - Peter Bala, Oct 01 2023

Crossrefs

Cf. continued fraction expansions: A004273 ( tanh(1) ), A204877 ( 3*tanh(1/3) ), A130824 ( tanh(1/2) ).

Programs

  • PARI
    a(n)=polcoeff(x*(1+12*x+3*x^2+4*x^3)/(1-x^2)^2+x*O(x^n),n)

Formula

G.f.: x*((1+3*x^2) + 4*x*(3+x^2))/(1-x^2)^2 = sum_{n>=0} a(n)*x^n.
From Carl R. White, Feb 11 2010: (Start)
a(n) = sign(n) * (2*n+1) * (3*cos(Pi*n)+5)/2.
a(2n+1) = a(2n-1) + 4, a(2n+2) = a(2n) + 16, with a(0)=0, a(1)=1, a(2)=12. (End)
a(n) = (5+3*(-1)^n)*(2*n-1)/2, with a(0)=0. Sum_{i=0..n} a(i) = A085787(A042948(n)). - Bruno Berselli, Jan 20 2012

A133653 A007318^(-1) * A003261.

Original entry on oeis.org

1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154
Offset: 1

Views

Author

Gary W. Adamson, Sep 19 2007

Keywords

Comments

It appears this sequence gives the positive integers m such that the sum of the first m Fibonacci numbers divides their product. For example, if n=2 and m=a(2)=6, we have the sum 1+1+2+3+5+8=20 which clearly divides the corresponding product 480. See A175553 for the analogous sequence when using the triangular numbers. Sum_{k=1..n} Fibonacci(k) divides Product_{k=1..n} Fibonacci(k). - John W. Layman, Jul 10 2010

Examples

			a(4) = 14 = (1, 3, 3, 1) dot (1, 5, -1, 1) = (1, 15, -3, 1).
		

Crossrefs

Essentially the same as A130824, A113127, A111284, A073760, A016825.

Formula

Inverse binomial transform of A003261: (1, 7, 23, 63, 159, 383, ...).
Binomial transform of [1, 5, -1, 1, -1, 1, ...].
"1" followed by 2 * [3, 5, 7, 9, 11, ...].
O.g.f.: x*(1+4x-x^2)/(1-x)^2. a(n) = 4n-2, n > 1. - R. J. Mathar, Jun 08 2008
1/(1+1/(6+1/(10+1/(14+1/(...(continued fraction)))))) = (e-1)/2 with e = 2.718281...- Philippe Deléham, Mar 09 2013

Extensions

More terms from R. J. Mathar, Jun 08 2008

A047441 Numbers that are congruent to {0, 2, 5, 6} mod 8.

Original entry on oeis.org

0, 2, 5, 6, 8, 10, 13, 14, 16, 18, 21, 22, 24, 26, 29, 30, 32, 34, 37, 38, 40, 42, 45, 46, 48, 50, 53, 54, 56, 58, 61, 62, 64, 66, 69, 70, 72, 74, 77, 78, 80, 82, 85, 86, 88, 90, 93, 94, 96, 98, 101, 102, 104, 106, 109, 110, 112, 114, 117, 118, 120, 122, 125
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: x^2*(2+3*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, May 26 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-7-i^(2*n)-i^(1-n)+i^(1+n))/4 where i=sqrt(-1).
a(2k) = A130824(k) k>0, a(2k-1) = A047615(k). (End)
E.g.f.: (4 - sin(x) + (4*x - 3)*sinh(x) + 4*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
a(n) = (8*n-7-cos(n*Pi)-2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 05 2017
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/16 + (4-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8. - Amiram Eldar, Dec 21 2021
Showing 1-3 of 3 results.