cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025169 a(n) = 2*Fibonacci(2*n+2).

Original entry on oeis.org

2, 6, 16, 42, 110, 288, 754, 1974, 5168, 13530, 35422, 92736, 242786, 635622, 1664080, 4356618, 11405774, 29860704, 78176338, 204668310, 535828592, 1402817466, 3672623806, 9615053952, 25172538050, 65902560198, 172535142544
Offset: 0

Views

Author

Keywords

Comments

The pairs (x, y) = (a(n), a(n+1)) satisfy x^2 + y^2 = 3*x*y + 4. - Michel Lagneau, Feb 01 2014

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2*Fibonacci(2*n+2) ); # G. C. Greubel, Jan 16 2020
  • Haskell
    a025169 n = a025169_list !! n
    a025169_list = 2 : 6 : zipWith (-) (map (* 3) $ tail a025169_list) a025169_list
    -- Reinhard Zumkeller, Apr 08 2012
    
  • Magma
    [2*Fibonacci(2*n+2): n in [0..30]]; // Vincenzo Librandi, Jul 11 2011
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2/(1-3*x + x^2) )); // Marius A. Burtea, Jan 16 2020
    
  • Maple
    seq( 2*fibonacci(2*n+2), n=0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    Table[2Fibonacci[2n+2], {n,0,30}] (* or *)
    CoefficientList[Series[2/(1-3x+x^2), {x,0,30}], x] (* Michael De Vlieger, Mar 09 2016 *)
    LinearRecurrence[{3, -1}, {2, 6}, 30] (* Jean-François Alcover, Sep 27 2017 *)
  • PARI
    a(n)=2*fibonacci(2*n+2)
    
  • Sage
    [2*fibonacci(2*n+2) for n in (0..30)] # G. C. Greubel, Jan 16 2020
    

Formula

G.f.: 2/(1 - 3*x + x^2).
a(n) = 3*a(n-1) - a(n-2).
a(n) = 2*A001906(n+1).
a(n) = A111282(n+2). - Reinhard Zumkeller, Apr 08 2012
a(n) = Fibonacci(2*n+1) + Lucas(2*n+1). - Bruno Berselli, Oct 13 2017

Extensions

Better description from Michael Somos

A236376 Riordan array ((1-x+x^2)/(1-x)^2, x/(1-x)^2).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 7, 5, 1, 4, 14, 16, 7, 1, 5, 25, 41, 29, 9, 1, 6, 41, 91, 92, 46, 11, 1, 7, 63, 182, 246, 175, 67, 13, 1, 8, 92, 336, 582, 550, 298, 92, 15, 1, 9, 129, 582, 1254, 1507, 1079, 469, 121, 17, 1, 10, 175, 957, 2508, 3718, 3367, 1925, 696, 154
Offset: 0

Views

Author

Philippe Deléham, Jan 24 2014

Keywords

Comments

Triangle T(n,k), read by rows, given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are A111282(n+1) = A025169(n-1).
Diagonal sums are A122391(n+1) = A003945(n-1).

Examples

			Triangle begins:
  1;
  1,  1;
  2,  3,   1;
  3,  7,   5,   1;
  4, 14,  16,   7,   1;
  5, 25,  41,  29,   9,  1;
  6, 41,  91,  92,  46, 11,  1;
  7, 63, 182, 246, 175, 67, 13, 1;
		

Crossrefs

Cf. Columns: A028310, A004006.
Cf. Diagonals: A000012, A005408, A130883.
Cf. Similar sequences: A078812, A085478, A111125, A128908, A165253, A207606.
Cf. A321620.

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare(1+x/(1-x)^2, 8); # Peter Luschny, Mar 06 2022
  • Mathematica
    CoefficientList[#, y] & /@
    CoefficientList[
    Series[(1 - x + x^2)/(1 - 2*x - x*y + x^2), {x, 0, 12}], x] (* Wouter Meeussen, Jan 25 2014 *)

Formula

G.f.: (1 - x + x^2)/(1 - 2*x - x*y + x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = 2, T(2,1) = 3, T(2,2) = 1, T(n,k) = 0 if k < 0 or k > n.
The Riordan square (see A321620) of 1 + x/(1 - x)^2. - Peter Luschny, Mar 06 2022
Showing 1-2 of 2 results.