cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A026736 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and k=(n-2)/2, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 6, 11, 10, 5, 1, 1, 7, 22, 21, 15, 6, 1, 1, 8, 29, 43, 36, 21, 7, 1, 1, 9, 37, 94, 79, 57, 28, 8, 1, 1, 10, 46, 131, 173, 136, 85, 36, 9, 1, 1, 11, 56, 177, 398, 309, 221, 121, 45, 10, 1, 1, 12, 67, 233, 575, 707, 530, 342, 166, 55, 11, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) is the number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, i+2)-to-(i+1, i+3) for i >= 0.

Examples

			Triangle begins
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,   1;
  1,  5,  6,   4,   1;
  1,  6, 11,  10,   5,   1;
  1,  7, 22,  21,  15,   6,   1;
  1,  8, 29,  43,  36,  21,   7,   1;
  1,  9, 37,  94,  79,  57,  28,   8,   1;
  1, 10, 46, 131, 173, 136,  85,  36,   9,   1;
  1, 11, 56, 177, 398, 309, 221, 121,  45,  10,   1;
  1, 12, 67, 233, 575, 707, 530, 342, 166,  55,  11,  1;
  ...
		

Crossrefs

Row sums give A026743.
T(2n,n) gives A026737(n) or A111279(n+1).

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 16 2019
  • Mathematica
    T[, 0] = T[n, n_] = 1; T[n_, k_] := T[n, k] = If[EvenQ[n] && k == (n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 22 2018 *)
  • PARI
    T(n,k) = if(k==n || k==0, 1, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 16 2019
    

Extensions

Offset corrected by Alois P. Heinz, Jul 23 2018

A026737 a(n) = T(2*n,n), T given by A026736.

Original entry on oeis.org

1, 2, 6, 21, 79, 309, 1237, 5026, 20626, 85242, 354080, 1476368, 6173634, 25873744, 108628550, 456710589, 1922354351, 8098984433, 34147706833, 144068881455, 608151037123, 2568318694867, 10850577045131, 45856273670841
Offset: 0

Views

Author

Keywords

Comments

Is this the same sequence as A111279? - Andrew S. Plewe, May 09 2007
Yes, see the Callan reference "A bijection...". - Joerg Arndt, Feb 29 2016

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-5*x+4*x^2 -(1-5*x)*Sqrt(1-4*x))/(2*x*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    T[, 0]=T[n, n_]=1; T[n_, k_]:= T[n, k]= If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]];
    a[n_] := T[2n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 22 2018 *)
    CoefficientList[Series[(1-5x+4x^2 -(1-5x)*Sqrt[1-4x])/(2*x*(1-4x-x^2)), {x, 0, 30}], x] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-5*x+4*x^2 -(1-5*x)*sqrt(1-4*x))/(2*x*(1-4*x-x^2))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [T(2*n, n) for n in (0..30)] # G. C. Greubel, Jul 16 2019

Formula

G.f.: (1-5*x+4*x^2 -(1-5*x)*sqrt(1-4*x))/(2*x*(1-4*x-x^2)). - G. C. Greubel, Jul 16 2019
a(n) ~ (47 - 21*sqrt(5)) * (2 + sqrt(5))^(n+2) / (2*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
G.f. G satisfies 0 = G^2*(x^3 + 4*x^2 - x) + G*(4*x^2 - 5*x + 1) + 4*x - 1. - F. Chapoton, Oct 16 2021
Showing 1-2 of 2 results.