A026849
a(n) = T(2n,n-3), T given by A026736.
Original entry on oeis.org
1, 9, 56, 300, 1487, 7041, 32381, 146017, 649395, 2859231, 12494914, 54291912, 234860677, 1012433965, 4352210327, 18666918033, 79916230409, 341615895659, 1458457275715, 6220016154525, 26503542364381, 112847001503099, 480173686483581
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1-Sqrt[1-4*x])^3 )), {x,0,30}], x] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019
A026737
a(n) = T(2*n,n), T given by A026736.
Original entry on oeis.org
1, 2, 6, 21, 79, 309, 1237, 5026, 20626, 85242, 354080, 1476368, 6173634, 25873744, 108628550, 456710589, 1922354351, 8098984433, 34147706833, 144068881455, 608151037123, 2568318694867, 10850577045131, 45856273670841
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-5*x+4*x^2 -(1-5*x)*Sqrt(1-4*x))/(2*x*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019
-
T[, 0]=T[n, n_]=1; T[n_, k_]:= T[n, k]= If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]];
a[n_] := T[2n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 22 2018 *)
CoefficientList[Series[(1-5x+4x^2 -(1-5x)*Sqrt[1-4x])/(2*x*(1-4x-x^2)), {x, 0, 30}], x] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec((1-5*x+4*x^2 -(1-5*x)*sqrt(1-4*x))/(2*x*(1-4*x-x^2))) \\ G. C. Greubel, Jul 16 2019
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[T(2*n, n) for n in (0..30)] # G. C. Greubel, Jul 16 2019
A026848
a(n) = T(2n,n-4), T given by A026736.
Original entry on oeis.org
1, 11, 79, 471, 2535, 12809, 62067, 292085, 1345718, 6102780, 27343148, 121359692, 534632836, 2341151646, 10201950700, 44278673806, 191540714294, 826265471868, 3555992623850, 15273547250820, 65491352071266, 280412963707416
Offset: 4
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^10/(128*x^4*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,40}], x], 4] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 45).coefficients(x, sparse=False); a[4:40] # G. C. Greubel, Jul 17 2019
A026672
a(n) = T(2n,n-1), T given by A026670. Also T(2n,n-1)=T(2n+1,n+2), T given by A026725; and T(2n,n-1), T given by A026736.
Original entry on oeis.org
1, 5, 22, 94, 398, 1680, 7085, 29877, 126021, 531751, 2244627, 9478605, 40040183, 169193597, 715143046, 3023492646, 12785541850, 54076955716, 228759017624, 967850695362, 4095387893312, 17331318506030
Offset: 2
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^4/(2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^4/(2*(8*x^2 -(1-Sqrt[1-4*x] )^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
-
a=((1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019
A026675
a(n) = T(2n-1,n-2), T given by A026670. Also T(2n-1,n-2) = T(2n,n+2), T given by A026725 and T(2n,n-2), T given by A026736.
Original entry on oeis.org
1, 6, 29, 131, 575, 2488, 10681, 45641, 194467, 827045, 3512983, 14909339, 63239487, 268127302, 1136495965, 4816202207, 20406887583, 86457399359, 366263778659, 1551535465465, 6572224024539, 27838835937511, 117918419518219
Offset: 2
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^5/(4*x*(8*x^2 -(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
-
a=((1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019
A026743
a(n) = Sum_{j=0..n} T(n,j), T given by A026736.
Original entry on oeis.org
1, 2, 4, 8, 17, 34, 73, 146, 314, 628, 1350, 2700, 5798, 11596, 24872, 49744, 106573, 213146, 456169, 912338, 1950697, 3901394, 8334539, 16669078, 35582783, 71165566, 151809737, 303619474, 647279131, 1294558262, 2758310121
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( ((1 -3*x^2)*Sqrt((1+2*x)/(1-2*x)) +(1+2*x)*(1+x^2))/(2*(1-4*x^2-x^4)) )); // G. C. Greubel, Jul 16 2019
-
CoefficientList[Normal[Series[((1-3x^2)Sqrt[(1+2x)/(1-2x)] +(1 + 2x)(1+ x^2))/(2(1-4x^2-x^4)), {x,0,40}]], x] (* David Callan, Jan 17 2016 *)
-
my(x='x+O('x^40)); Vec(((1-3*x^2)*sqrt((1+2*x)/(1-2*x)) +(1+2*x)*(1+x^2))/(2*(1-4*x^2-x^4))) \\ G. C. Greubel, Jul 16 2019
-
(((1-3*x^2)*sqrt((1+2*x)/(1-2*x)) + (1+2*x)*(1+x^2))/(2*(1-4*x^2 - x^4))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
A026852
a(n) = T(2n,n+3), T given by A026736.
Original entry on oeis.org
1, 8, 45, 221, 1016, 4506, 19572, 83950, 357310, 1513513, 6392134, 26948764, 113500985, 477801129, 2011058681, 8464967333, 35637556603, 150075181365, 632191803847, 2664023530675, 11229995113561, 47355649431833, 199760722776165
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^9/(64*x^4*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[Sqrt[1-4*x]*(1-Sqrt[1-4*x])^9/(64*x^4*(8*x^2 -(1-Sqrt[1-4*x])^3)), {x, 0, 40}], x], 3] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^40)); Vec(sqrt(1-4*x)*(1-sqrt(1-4*x))^9/(64*x^4*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^9/(64*x^4*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 45).coefficients(x, sparse=False); a[3:40] # G. C. Greubel, Jul 17 2019
A026742
a(n) = T(n, floor(n/2)), T given by A026736.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 21, 43, 79, 173, 309, 707, 1237, 2917, 5026, 12111, 20626, 50503, 85242, 211263, 354080, 885831, 1476368, 3720995, 6173634, 15652239, 25873744, 65913927, 108628550, 277822147, 456710589, 1171853635, 1922354351
Offset: 0
-
T:= function(n,k)
if k=0 or k=n then return 1;
elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
else return T(n-1, k-1) + T(n-1, k);
fi;
end;
Flat(List([0..20], n-> T(n,Int(n/2)) )); # G. C. Greubel, Jul 19 2019
-
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] +T[n-2, k-1] +T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Jul 19 2019 *)
-
T(n,k) = if(k==n || k==0, 1, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
vector(20, n, n--; T(n, n\2)) \\ G. C. Greubel, Jul 19 2019
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[T(n, floor(n/2)) for n in (0..40)] # G. C. Greubel, Jul 19 2019
A026744
a(n) = Sum_{j=0..floor(n/2)} T(n,j), T given by A026736.
Original entry on oeis.org
1, 1, 3, 4, 12, 18, 51, 81, 220, 361, 952, 1595, 4118, 6999, 17787, 30548, 76696, 132766, 330148, 575054, 1418946, 2483812, 6089912, 10703456, 26104178, 46034722, 111769554, 197665364, 478085534, 847542518, 2043167075
Offset: 0
-
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]];
Table[Sum[T[n, j], {j, 0, Floor[n/2]}], {n, 0, 35}] (* G. C. Greubel, Jul 22 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n, j) for j in (0..floor(n/2))) for n in (0..35)] # G. C. Greubel, Jul 22 2019
A026745
a(n) = Sum_{j=0..n} Sum_{i=0..n} T(j,i), T given by A026736.
Original entry on oeis.org
1, 3, 7, 15, 32, 66, 139, 285, 599, 1227, 2577, 5277, 11075, 22671, 47543, 97287, 203860, 417006, 873175, 1785513, 3736210, 7637604, 15972143, 32641221, 68224004, 139389570, 291199307, 594818781, 1242097912, 2536656174
Offset: 0
-
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]];
b[n_]:= Sum[T[n, j], {j,0,n}]; Table[Sum[b[j], {j,0,n}], {n,0,35}] (* G. C. Greubel, Jul 22 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
def b(n): return sum(T(n, j) for j in (0..n))
[sum(b(j) for j in (0..n)) for n in (0..35)] # G. C. Greubel, Jul 22 2019
Showing 1-10 of 30 results.
Comments