cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Tani Akinari

Tani Akinari's wiki page.

Tani Akinari has authored 1 sequences.

A247109 Number of permutations of length n with two 4-sequences.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 11, 65, 433, 3271, 27741, 261231, 2708064, 30671367, 377034018, 5001404982, 71229862678, 1084282429946, 17571257417630, 302064161086250, 5490937395703435, 105243824522368960, 2121386876912041845, 44863116021267642255, 993272322666679219071, 22977273619066571708457
Offset: 1

Author

Tani Akinari, Nov 21 2014

Keywords

Crossrefs

Cf. A002630 (permutations with two 3-sequences).

Programs

  • Mathematica
    Table[Sum[(-1)^k * k*(k-1)/2 * Sum[Sum[Binomial[k-1,p] * Binomial[k-p-1,i-2*p] * Binomial[n-2*k+p-1,n-3*k+i-1] * (n-3*k+i)!,{p,0,k-1}],{i,Max[0,3*k-n],2*(k-1)}],{k,2,n-3}],{n,1,20}] (* Vaclav Kotesovec, Nov 23 2014 after Tani Akinari *)
  • PARI
    a(n)=sum(k=2,n-3,(-1)^k*k*(k-1)/2*sum(i=max(0,3*k-n),2*(k-1),sum(p=0,k-1,binomial(k-1,p)*binomial(k-p-1,i-2*p)*binomial(n-2*k+p-1,n-3*k+i-1)*(n-3*k+i)!)))

Formula

a(n) ~ n! / n^3. - Vaclav Kotesovec, Nov 23 2014