cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A097872 Numerator of J(n) = A000356(n)/A000309(n) (average number of 4-colorings of rank 0 in a rooted nonseparable map which is trivalent and has 2n nodes).

Original entry on oeis.org

1, 5, 35, 147, 99, 4719, 102245, 158015, 71383, 9493939, 117578783, 81161825, 192225375, 10034164575, 176876744175, 874129996575, 506075261175, 43691164214775, 54585584382615, 91204126883805, 75171984897685, 11189060829001575, 315531515377844415, 3726508102129106091
Offset: 1

Views

Author

N. J. A. Sloane, Sep 21 2004

Keywords

Examples

			1, 5/4, 35/24, 147/88, 99/52, 4719/2176, 102245/41344, ...
		

Crossrefs

A097875 Denominator of J(n) = A000356(n)/A000309(n) (average number of 4-colorings of rank 0 in a rooted nonseparable map which is trivalent and has 2n nodes).

Original entry on oeis.org

1, 4, 24, 88, 52, 2176, 41344, 55936, 22080, 2561280, 27617280, 16570368, 34061312, 1540980736, 23512383488, 100462002176, 50231001088, 3741530783744, 4029340844032, 5798319751168, 4112761683968, 526433495547904, 12757611732533248, 129398633287122944
Offset: 1

Views

Author

N. J. A. Sloane, Sep 21 2004

Keywords

Examples

			1, 5/4, 35/24, 147/88, 99/52, 4719/2176, 102245/41344, ...
		

Crossrefs

A000891 a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.

Original entry on oeis.org

1, 3, 20, 175, 1764, 19404, 226512, 2760615, 34763300, 449141836, 5924217936, 79483257308, 1081724803600, 14901311070000, 207426250094400, 2913690606794775, 41255439318353700, 588272005095043500
Offset: 0

Views

Author

Keywords

Comments

Number of parallelogram polyominoes having n+1 columns and n+1 rows. - Emeric Deutsch, May 21 2003
Number of tilings of an hexagon.
a(n) is the number of non-crossing partitions of [2n+1] into n+1 blocks. For example, a[1] counts 13-2, 1-23, 12-3. - David Callan, Jul 25 2005
The number of returning walks of length 2n on the upper half of a square lattice, since a(n) = Sum_{k=0..2n} binomial(2n,k)*A126120(k)*A126869(n-k). - Andrew V. Sutherland, Mar 24 2008
For sequences counting walks in the upper half-plane starting from the origin and finishing at the lattice points (0,m) see A145600 (m = 1), A145601 (m = 2), A145602 (m = 3) and A145603 (m = 4). - Peter Bala, Oct 14 2008
The number of proper mergings of two n-chains. - Henri Mühle, Aug 17 2012
a(n) is number of pairs of non-intersecting lattice paths from (0,0) to (n+1,n+1) using (1,0) and (0,1) as steps. Here, non-intersecting means two paths do not share a vertex except the origin and the destination. For example, a(1) = 3 because we have three such pairs from (0,0) to (2,2): {NNEE,EENN}, {NNEE,ENEN}, {NENE,EENN}. - Ran Pan, Oct 01 2015
Also the number of ordered rooted trees with 2(n+1) nodes and n+1 leaves, i.e., half of the nodes are leaves. These trees are ranked by A358579. The unordered version is A185650. - Gus Wiseman, Nov 27 2022
The number of secondary GL(2) invariants constructed from n+1 two component vectors. This number was evaluated by using the Molien-Weyl formula to compute the Hilbert series of the ring of invariants. - Jaco van Zyl, Jun 30 2025

Examples

			G.f. = 1 + 3*x + 20*x^2 + 175*x^3 + 1764*x^4 + 19404*x^5 + ...
From _Gus Wiseman_, Nov 27 2022: (Start)
The a(2) = 20 ordered rooted trees with 6 nodes and 3 leaves:
  (((o)oo))  (((o)o)o)  (((o))oo)
  (((oo)o))  (((oo))o)  ((o)(o)o)
  (((ooo)))  ((o)(oo))  ((o)o(o))
  ((o(o)o))  ((o(o))o)  (o((o))o)
  ((o(oo)))  ((oo)(o))  (o(o)(o))
  ((oo(o)))  (o((o)o))  (oo((o)))
             (o((oo)))
             (o(o(o)))
(End)
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 94.

Crossrefs

Cf. A145600, A145601, A145602, A145603. - Peter Bala, Oct 14 2008
Equals half of A267981.
Counts the trees ranked by A358579.
A001263 counts ordered rooted trees by nodes and leaves.
A090181 counts ordered rooted trees by nodes and internals.

Programs

  • Haskell
    a000891 n = a001263 (2 * n - 1) n  -- Reinhard Zumkeller, Oct 10 2013
  • Magma
    [Factorial(2*n)*Factorial(2*n+1) / (Factorial(n) * Factorial(n+1))^2: n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    with(combstruct): bin := {B=Union(Z,Prod(B,B))} :seq(1/2*binomial(2*i,i)*(count([B,bin,unlabeled],size=i)), i=1..18) ; # Zerinvary Lajos, Jun 06 2007
  • Mathematica
    a[ n_] := If[ n == -1, 0, Binomial[2 n + 1, n]^2 / (2 n + 1)]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - Hypergeometric2F1[ -1/2, 1/2, 1, 16 x]) / (4 x), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ BesselI[0, 2 x] BesselI[1, 2 x] / x, {x, 0, 2 n}]]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticE[ 16 x] / (Pi/2)) / (4 x), {x, 0, n}]; (* Michael Somos, Sep 18 2016 *)
    a[n_] := (2 n + 1) CatalanNumber[n]^2;
    Array[a, 20, 0] (* Peter Luschny, Mar 03 2020 *)
  • PARI
    {a(n) = binomial(2*n+1, n)^2 / (2*n + 1)}; /* Michael Somos, Jun 22 2005 */
    
  • PARI
    a(n) = matdet(matrix(n, n, i, j, binomial(n+j+1,i+1))) \\ Hugo Pfoertner, Oct 22 2022
    

Formula

-4*a(n) = A010370(n+1).
G.f.: (1 - E(16*x)/(Pi/2))/(4*x) where E() is the elliptic integral of the second kind. [edited by Olivier Gérard, Feb 16 2011]
G.f.: 3F2(1, 1/2, 3/2; 2,2; 16*x)= (1 - 2F1(-1/2, 1/2; 1; 16*x)) / (4*x). - Olivier Gérard, Feb 16 2011
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x) * BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
a(n) = A001700(n)*A000108(n) = (1/2)*A000984(n+1)*A000108(n). - Zerinvary Lajos, Jun 06 2007
For n > 0, a(n) = (n+2)*A000356(n) starting (1, 5, 35, 294, ...). - Gary W. Adamson, Apr 08 2011
a(n) = A001263(2*n+1,n+1) = binomial(2*n+1,n+1)*binomial(2*n+1,n)/(2*n+1) (central members of odd numbered rows of Narayana triangle).
G.f.: If G_N(x) = 1 + Sum_{k=1..N} ((2*k)!*(2*k+1)!*x^k)/(k!*(k+1)!)^2, G_N(x) = 1 + 12*x/(G(0) - 12*x); G(k) = 16*x*k^2 + 32*x*k + k^2 + 4*k + 12*x + 4 - 4*x*(2*k+3)*(2*k+5)*(k+2)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence (n+1)^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = A005558(2n). - Mark van Hoeij, Aug 20 2014
a(n) = A000894(n) / (n+1) = A248045(n+1) / A000142(n+1). - Reinhard Zumkeller, Sep 30 2014
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: 2F2(1/2,3/2; 2,2; 16*x).
a(n) ~ 2^(4*n+1)/(Pi*n^2). (End)
a(n) = A005408(n)*(A000108(n))^2. - Ivan N. Ianakiev, Nov 13 2019
a(n) = det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(n+j+1,i+1). - Benoit Cloitre, Oct 22 2022
a(n) = Integral_{x=0..16} x^n*W(x) dx, where W(x) = (16*EllipticE(1 - x/16) - x*EllipticK(1 - x/16))/(8*Pi^2*sqrt(x)), n=>0. W(x) diverges at x=0, monotonically decreases for x>0, and vanishes at x=16. EllipticE and EllipticK are elliptic functions. This integral representation as n-th moment of a positive function W(x) on the interval [0, 16] is unique. - Karol A. Penson, Dec 20 2023

Extensions

More terms from Andrew V. Sutherland, Mar 24 2008

A001246 Squares of Catalan numbers.

Original entry on oeis.org

1, 1, 4, 25, 196, 1764, 17424, 184041, 2044900, 23639044, 282105616, 3455793796, 43268992144, 551900410000, 7152629313600, 93990019574025, 1250164827828900, 16807771574144100, 228138727737690000, 3123219182728976100, 43087676888260976400, 598598221893939680400, 8369059450146650049600
Offset: 0

Views

Author

Keywords

Comments

Also multi-component meanders.
Also, number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, -1), (-1, 1), (1, -1), (1, 1)}. [Evans and Pugh show that this is the same sequence.] - N. J. A. Sloane, Jul 04 2014
This is probably the diagonal of A209805. In this case a(n) = number of non-crossing partitions up to rotation of [2n+1] into n+1 blocks. See "Partition related number triangles" in Links section. - Tilman Piesk, Apr 09 2012
a(n) is also the number of regular cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_{n+1}. See Table 1 in the Hoang/Mütze reference in the Links section. - Torsten Muetze, Nov 28 2019

Crossrefs

Row sums of triangle A008828.
Probably diagonal of A209805.

Programs

  • GAP
    List([0..25],n->(Binomial(2*n,n)/(n+1))^2); # Muniru A Asiru, Mar 28 2018
  • Maple
    seq((binomial(2*n,n)/(1+n))^2, n=0..18); # Zerinvary Lajos, Jun 18 2007
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
    CatalanNumber[Range[0,30]]^2  (* Harvey P. Dale, Apr 26 2011 *)
    a[ n_] := If[ n == -1, 0, CatalanNumber[ n]^2] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ (2 EllipticE[ 16 x] - (1 - 16 x) EllipticK[ 16 x] - Pi/2) / ( 2 Pi x), {x, 0, n}] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ HypergeometricPFQ[ {1/2}, {2, 2}, 4 x^2], {x, 0, 2 n}]] (* Michael Somos, Jul 11 2011 *)
  • MuPAD
    combinat::dyckWords::count(n)^2 $ n = 0..18 // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n)=(binomial(2*n,n)/(n+1))^2 \\ Charles R Greathouse IV, Jul 16 2011
    
  • Sage
    [catalan_number(i)^2 for i in range(0,19)] # Zerinvary Lajos, May 17 2009
    

Formula

G.f.: -1/(4*x)+1/2*(16*x-1)/x * EllipticK(4*x^(1/2))/Pi + 1/x*EllipticE(4*x^(1/2))/Pi. - Vladeta Jovovic, Oct 12 2003
G.f.: 3F2( (1, 1/2, 1/2); (2, 2); 16x) = (-1 + 2F1( (-1/2, -1/2); (1); 16x))/(4*x) - Olivier Gérard, Feb 16 2011
E.g.f.: hypergeom([1/2], [2, 2], 4*x^2) = 2*BesselI(0, 2*x)^2-BesselI(0, 2*x)*BesselI(1, 2*x)/x-2*BesselI(1, 2*x)^2. - Vladeta Jovovic, Jun 04 2005
D-finite with recurrence (n+1)^2*a(n) -4*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Jan 04 2013
From Ilya Gutkovskiy, Mar 23 2017: (Start)
a(n) ~ 16^n/(Pi*n^3).
Sum_{n>=0} 1/a(n) = 3F2(1,2,2; 1/2,1/2; 1/16) = 2.295732295098655... (End)
Sum {n>=0} a(n)*(n+1)/16^n = 4/Pi. This is a kind of Ramanujan-Sato series. - Ralf Steiner, Mar 23 2017
From Peter Bala, Mar 28 2018: (Start)
a(n) = 1/(2*n + 1)*f(2*n)/(f(n)*f(n)), where f(n) = n!*(n+1)!. Cf. Catalan(n) = 1/(n + 1)*(2*n)!/(n!*n!).
a(n) = 1/(2*n + 1)*A000891(n).
a(n) = (n + 2)/(2*n + 1)*A000356(n).
a(n) = (n + 2)/3*A186264(n-1). (End)
From Amiram Eldar, Mar 27 2022: (Start)
a(n) = A000108(n)^2.
Sum_{n>=0} a(n)/16^n = 16/Pi - 4. (End)

Extensions

As a result of the work of Evans and Pugh, it was possible to merge A151342 with this sequence. - N. J. A. Sloane, Jul 04 2014

A005568 Product of two successive Catalan numbers C(n)*C(n+1).

Original entry on oeis.org

1, 2, 10, 70, 588, 5544, 56628, 613470, 6952660, 81662152, 987369656, 12228193432, 154532114800, 1986841476000, 25928281261800, 342787130211150, 4583937702039300, 61923368957373000, 844113292629453000, 11600528392993339800, 160599522947154548400, 2238236829690383152800
Offset: 0

Views

Author

Keywords

Comments

Also equal to the number of standard tableaux of 2n cells with height less than or equal to 4. A005817(2n) - Mike Zabrocki, Feb 22 2007
Also equal to Sum binomial(2n,2i)*C(i)*C(n-i) = (4/Pi^2) Integral_{y=0..Pi} Integral_{x=0..Pi} (2*cos(x)+2*cos(y))^(2n)*sin^2(x)*sin^2(y) dx dy, since this counts walks of 2n steps in the nonnegative quadrant of an integer lattice that return to the origin (cf. R. K. Guy link below). - Andrew V. Sutherland, Nov 29 2007
Also, number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, 0), (-1, 1), (1, -1), (1, 0)}. - Manuel Kauers, Nov 18 2008 - Manuel Kauers, Nov 18 2008
Also, number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, 0), (0, -1), (0, 1), (1, 0)}. - Manuel Kauers, Nov 18 2008
a(2n-2) is also the sum of the numbers of standard Young tableaux of size 2n of (2,2) rectangular hook shapes (k+2,k+2,2^{n-2-k}, 0 <= k <= n-2. - Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010
Also, number of tree-rooted planar maps with n edges. - Noam Zeilberger, Aug 18 2017

References

  • M. Lothaire, Applied Combinatorics on Words, Cambridge, 2005. See Prop. 9.1.9, p. 452. [From N. J. A. Sloane, Apr 03 2012]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..21],n->Binomial(2*n,n)*Binomial(2*(n+1),n+1)/((n+1)*(n+2))); # Muniru A Asiru, Dec 13 2018
    
  • Magma
    [Catalan(n)*Catalan(n+1): n in [0..21]]; // Vincenzo Librandi, Feb 06 2020
  • Maple
    A000108:=n->binomial(2*n,n)/(n+1):
    seq(A000108(n)*A000108(n+1),n=0..21); # Emeric Deutsch, Mar 05 2007
  • Mathematica
    f[n_] := CatalanNumber[n] CatalanNumber[n + 1] (* Or *) (4n + 2) Binomial[2 n, n]^2/(n^3 + 4n^2 +5n + 2) (* Or *) (2 n)! (2 + 2 n)!/(n! ((1 + n)!)^2 (2 + n)!); Array[f, 22, 0] (* Robert G. Wilson v *)
    Times@@@Partition[CatalanNumber[Range[0,30]],2,1] (* Harvey P. Dale, Jul 23 2012 *)
  • PARI
    (alias(C,binomial));a(n)=(C(2*n,n)-C(2*n,n-1))*(C(2*n+2,n+1)-C(2*n+2,n)) /* Michael Somos, Jun 22 2005 */
    
  • Sage
    [catalan_number(i)*catalan_number(i+1) for i in range(0,22)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = binomial(2*n,n)*binomial(2*n+2,n+1)/((n+1)(n+2)).
a(n) = 2*(2*n+1)*binomial(2*n,n)^2/((n+2)(n+1)^2).
D-finite with recurrence (n+2)*(n+1)*a(n) = 4*(2*n-1)*(2*n+1)*a(n-1). - Corrected R. J. Mathar, Feb 05 2020
G.f. in Maple notation: (1/2)/x+1/768/(x^2*Pi)*((32-512*x)*EllipticK(4*x^(1/2))+(-32-512*x)*EllipticE(4*x^(1/2))). - Karol A. Penson, Oct 24 2003
G.f.: 3F2( (1, 1/2, 3/2); (2, 3))(16*x) = (1 - 2F1((-1/2, 1/2); (2))( 16*x))/(2*x). - Olivier Gérard Feb 16 2011
G.f.: (1/(6*x))*(3+(16*x-1)*(2*hypergeom([1/2, 1/2],[1],16*x) + (16*x+1)*hypergeom([3/2, 3/2],[2],16*x))). - Mark van Hoeij, Nov 02 2009
G.f.: (1-hypergeom([-1/2,1/2],[2],16*x))/(2*x). - Mark van Hoeij, Aug 14 2014
E.g.f.: (1/3)*(8*x^2*BesselI(0, 2*x)^2 - 4*BesselI(0, 2*x)*BesselI(1, 2*x)*x - BesselI(1, 2*x)^2 - 8*BesselI(1, 2*x)^2*x^2)/x. - Vladeta Jovovic, Dec 29 2003
E.g.f. Sum_{n>=0} a(n)*x^(2n)/(2n)! = BesselI(1, 2x)^2/x^2. - Michael Somos, Jun 22 2005
From Paul D. Hanna, Nov 26 2009: (Start)
G.f.: A(x) = [(1/x)*Series_Reversion(x/F(x)^2)]^(1/2) where F(x) = g.f. of A004304, where A004304(n) is the number of nonseparable planar tree-rooted maps with n edges.
G.f.: A(x) = F(x*A(x)^2) where A(x/F(x)^2) = F(x) where F(x) = g.f. of A004304.
G.f.: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) where G(x) = g.f. of A168450.
G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)) where G(x) = g.f. of A168450.
Self-convolution yields A168452.
(End)
Representation of a(n) as the n-th power moment of a positive function on the segment [0,16]; in Mathematica notation, a(n) = NIntegrate[x^n*(8 ((1+x/16)*EllipticE[1-x/16]-1/8*x*EllipticK[1-x/16]))/(3*(Pi^2)*Sqrt[x]),{x,0,16}]. This solution of the Hausdorff power moment problem is unique. - Karol A. Penson, Oct 05 2011
G.f. y=A(x) satisfies: 0 = x^2*(16*x-1)*y''' + 6*x*(16*x-1)*y'' + 6*(18*x-1)*y' + 12*y. - Gheorghe Coserea, Jun 14 2018
Sum_{n>=0} a(n)/4^(2*n+1) = 2 - 16/(3*Pi). - Amiram Eldar, Apr 02 2022

Extensions

More terms from Emeric Deutsch, Feb 20 2004
More terms from Manuel Kauers, Nov 18 2008
Two hypergeometric g.f.s, van Hoeij's formula checked and formula field edited by Olivier Gérard, Feb 16 2011

A000309 Number of rooted planar bridgeless cubic maps with 2n nodes.

Original entry on oeis.org

1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0

Views

Author

Keywords

Comments

Also counts rooted planar non-separable triangulations with 3n edges. - Valery A. Liskovets, Dec 01 2003
Equivalently, rooted planar loopless triangulations with 2n triangles. - Noam Zeilberger, Oct 06 2016
Description trees of type (2,2) with n edges. (A description tree of type (a,b) is a rooted plane tree where every internal node is labeled by an integer between a and [b + sum of labels of its children], every leaf is labeled a, and the root is labeled [b + sum of labels of its children]. See Definition 1 and Section 5.2 of Cori and Schaeffer 2003.) - Noam Zeilberger, Oct 08 2017
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • GAP
    List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
  • Magma
    [2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
    
  • Maple
    a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
    A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
  • Mathematica
    f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *)
    Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
    
  • Sage
    [2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
    

Formula

a(n) = 2^(n-1) * A000139(n) for n > 0.
a(n) = 4*a(n-1)*binomial(3*n, 3) / binomial(2*n+2, 3).
a(n) = 2^n*(3*n)!/ ( (n+1)!*(2*n+1)! ).
G.f.: (1/(6*x)) * (hypergeom([ -2/3, -1/3],[1/2],(27/2)*x)-1). - Mark van Hoeij, Nov 02 2009
a(n) ~ 3^(3*n+1/2)/(sqrt(Pi)*2^(n+2)*n^(5/2)). - Ilya Gutkovskiy, Oct 06 2016
D-finite with recurrence (n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Nov 02 2018
a(n) = -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Karol A. Penson, Feb 24 2025: (Start)
G.f.: hypergeom([1/3, 2/3, 1], [3/2, 2], (27*z)/2).
G.f. A(z) satisfies: - 1 + 27*z + (-36*z + 1)*A(z) + 8*z*A(z)^2 + 16*z^2*A(z)^3 = 0.
G.f.: ((4*sqrt(4 - 54*z) + 12*i*sqrt(6)*sqrt(z))^(1/3)*(sqrt(z*(4 - 54*z)) - 9*i*sqrt(6)*z) + (4*sqrt(4 - 54*z) - 12*i*sqrt(6)*sqrt(z))^(1/3)*(9*i*sqrt(6)*z + sqrt(z*(4 - 54*z))) - 8*sqrt(z))/(48*z^(3/2)), where i = sqrt(-1) is the imaginary unit.
a(n) = Integral_{x=0..27/2} x^n*W(x), where W(x) = (6^(1/3)*(9 + sqrt(81 - 6*x))^(2/3)*(9*sqrt(3) - sqrt(27 - 2*x)) - 2^(2/3)*3^(1/6)*(27 + sqrt(81 - 6*x))*x^(1/3))/(48*Pi*(9 + sqrt(81 - 6*x))^(1/3)*x^(2/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem for x on (0, 27/2). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-2/3), and for x > 0 is monotonically decreasing to zero at x = 27/2. (End)

Extensions

Definition clarified by Michael Albert, Oct 24 2008

A073165 Triangle T(n,k) read by rows: related to David G. Cantor's sigma function.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 8, 1, 1, 5, 20, 35, 16, 1, 1, 6, 35, 112, 126, 32, 1, 1, 7, 56, 294, 672, 462, 64, 1, 1, 8, 84, 672, 2772, 4224, 1716, 128, 1, 1, 9, 120, 1386, 9504, 28314, 27456, 6435, 256, 1, 1, 10, 165, 2640, 28314, 151008, 306735, 183040, 24310, 512, 1
Offset: 0

Views

Author

Michael Somos, Jul 24 2002

Keywords

Comments

Square array T(n+k,k) read by antidiagonals: number of stars of length k with n branches.
Row n of T(n+k,k) has g.f. (floor(n/2)+1)F(floor(n/2))(1,3/2,5/2,...,(2*floor(n/2)+1)/2;n,n-1,...,n-floor(n/2)+1;2^n*x) (conjecture). [Paul Barry, Jan 23 2009]

Examples

			Triangle rows:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  4,   1;
  1, 4, 10,   8,    1;
  1, 5, 20,  35,   16,    1;
  1, 6, 35, 112,  126,   32,    1;
  1, 7, 56, 294,  672,  462,   64,   1;
  1, 8, 84, 672, 2772, 4224, 1716, 128, 1;
		

Crossrefs

Square array has main diagonal A049505, columns include A001700, A003645, A000356.
Cf. A133112.

Programs

  • Mathematica
    t[n_, k_] := Product[ (n-k+i+j-1) / (i+j-1), {j, 1, k}, {i, 1, j}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, May 23 2012, after PARI *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, prod( i=1, (k+1)\2, binomial(n + 2*i - 1 - k%2, 4*i - 1 - k%2*2)) / prod( i=0, (k-1)\2, binomial(2*k - 2*i - 1, 2*i)))}
    
  • PARI
    {T(n, k) = if( k<0 || n<0, 0, prod( j=1, k, prod( i=1, j, (n - k + i + j - 1) / (i + j - 1) )))} /* Michael Somos, Oct 16 2006 */

Formula

T(n, k) * T(n-2, k-1) - 2 * T(n-1, k-1) * T(n-1, k) + T(n, k-1) * T(n-2, k) = 0.
T(n+k, k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1). - Ralf Stephan, Mar 02 2005

Extensions

Edited by Ralf Stephan, Mar 02 2005

A102539 Square array T(n,k) read by antidiagonals: T(n,k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1).

Original entry on oeis.org

2, 3, 4, 4, 10, 8, 5, 20, 35, 16, 6, 35, 112, 126, 32, 7, 56, 294, 672, 462, 64, 8, 84, 672, 2772, 4224, 1716, 128, 9, 120, 1386, 9504, 28314, 27456, 6435, 256, 10, 165, 2640, 28314, 151008, 306735, 183040, 24310, 512, 11, 220, 4719, 75504, 674817
Offset: 1

Views

Author

Ralf Stephan, Jan 14 2005

Keywords

Comments

Number of semistandard Young tableaux with at most n columns and with entries in [k].
T(n,k) is the number of k X k symmetric matrices with entries in 0..n with each row (and column) in nondecreasing order. - R. H. Hardin, Jul 08 2008

Examples

			Square array T(n,k) begins:
  2,  4,    8,    16,     32,       64, ...
  3, 10,   35,   126,    462,     1716, ...
  4, 20,  112,   672,   4224,    27456, ...
  5, 35,  294,  2772,  28314,   306735, ...
  6, 56,  672,  9504, 151008,  2617472, ...
  7, 84, 1386, 28314, 674817, 18076916, ...
  ...
		

Crossrefs

Rows include A000079, A001700, A003645, A000356.
Main diagonal is A049505.

Programs

  • Mathematica
    T[n_, k_] := Product[(n + i + j - 1)/(i + j - 1), {i, 1, k}, {j, i, k}];
    Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 06 2018 *)

Formula

It appears that T is identical to the reflected triangle A073165, i.e. T(n, k) = Prod[i=1..floor((k+1)/2), C(n+k+2i-1-(k mod 2), 4i-1-2(k mod 2))] / Prod[i=0..floor((k-1)/2), C(2k-2i-1, 2i)].

A000264 Number of 3-edge-connected rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle.

Original entry on oeis.org

1, 1, 3, 14, 80, 518, 3647, 27274, 213480, 1731652, 14455408, 123552488, 1077096124, 9548805240, 85884971043, 782242251522, 7203683481720, 66989439309452, 628399635777936, 5940930064989720, 56562734108608536
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    max = 21; b[n_] := (2n)!*(2n + 2)!/(2*n!*(n + 1)!^2*(n + 2)!); b[0] = 0; bf[x_] := Sum[b[n]*x^n, {n, 0, max}]; Clear[a]; a[0] = 0; a[1] = a[2] = 1; af[x_] := Sum[a[n]*x^n, {n, 0, max}]; se = Series[bf[x] - af[x*(1 + 2*bf[x])^2], {x, 0, max}] // Normal; Table[a[n], {n, 1, max}] /. SolveAlways[se == 0, x] // First (* Jean-François Alcover, Jan 31 2013, after Sean A. Irvine *)

Formula

Let b(n)=(2n)!*(2n+2)!/(2*n!*(n+1)!^2*(n+2)!). Let B(x) be the generating function producing b(n), and A(x) be the generating function producing a(n). Then these sequences satisfy the functional equation B(x)=A(x(1+2*B(x))^2). - Sean A. Irvine, Apr 05 2010

Extensions

Better definition from Michael Albert, Oct 24 2008
More terms from Sean A. Irvine, Apr 05 2010

A028475 Total number of Hamiltonian cycles avoiding the root-edge in rooted cubic bipartite planar maps with 2n nodes.

Original entry on oeis.org

1, 4, 20, 114, 712, 4760, 33532, 246146, 1867556, 14557064, 116038672, 942597638, 7781117632, 65131605840, 551825148660, 4725380142050, 40848069782932, 356094155836640, 3127831256055624, 27662285924478844, 246164019830290392, 2203001550262470312, 19817596934324929372
Offset: 1

Views

Author

Valery A. Liskovets, Apr 29 2002

Keywords

Comments

An algorithm for calculating these numbers is known. 2*a(n) can be interpreted as the number of pairs of non-intersecting arch configurations (over and under a straight line) connecting 2n points in the line, where all points are marked + and - alternately, every point belongs to a unique arch and the ends of every arch have different signs.

Examples

			n=2. There are 3 rooted cubic bipartite planar maps with 4 nodes: a quadrangular with two non-adjacent edges doubled (parallel), where one vertex and any of the edges incident to it are taken as the root. No Hamiltonian cycle can avoid the sole edge incident to the root-vertex. For the other two rootings, there are 4 root-edge avoiding Hamiltonian cycles. So a(2)=4.
		

Crossrefs

Formula

a(n) = A116456(n) / 2. - Sean A. Irvine, Feb 01 2020

Extensions

a(21)-a(32) from Cyril Banderier, Nov 06 2022
Showing 1-10 of 11 results. Next