A168452
Self-convolution of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).
Original entry on oeis.org
1, 4, 24, 180, 1556, 14840, 152092, 1646652, 18613664, 217852008, 2623657384, 32361812912, 407342311632, 5217211974832, 67836910362772, 893766246630572, 11913422912188432, 160450066324972472, 2181014117345997704, 29894260817385950064, 412839378639052110464
Offset: 0
G.f.: A(x) = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 +...
A(x)^(1/2) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A005568(n)*x^n +...
A(x) satisfies: A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A004304:
G(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
G(x)^2 = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...+ A168451(n)*x^n +...
-
a:= proc(n) option remember; `if`(n<3, [1, 4, 24][n+1],
(12*n*(n+1)*(16*n^4+68*n^3+44*n^2-63*n-25) *a(n-1)
-(3072*n^6+768*n^5-8448*n^4+1152*n^3+3264*n^2-288) *a(n-2)
+1024*n*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(4*n+1) *a(n-3)) /
((n+1)^2*(n+2)*(n+3)*(n+4)*(4*n-3)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 20 2013
-
c[n_] := CatalanNumber[n]*CatalanNumber[n+1]; a[n_] := ListConvolve[cc = Array[c, n+1, 0], cc][[1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 22 2017 *)
-
{a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff(Ser(C_2)^2,n)}
A005817
a(n) = C(floor(n/2 + 1/2))*C(floor(n/2 + 1)) where C(i) = Catalan numbers A000108.
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 70, 196, 588, 1764, 5544, 17424, 56628, 184041, 613470, 2044900, 6952660, 23639044, 81662152, 282105616, 987369656, 3455793796, 12228193432, 43268992144, 154532114800, 551900410000, 1986841476000, 7152629313600
Offset: 0
There are 26 standard tableaux of size 5, one of them is of length longer than 4 so a(5) = 25.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), y_4(n), p. 452.
- T. D. Noe, Table of n, a(n) for n=0..200
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
- A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008-2009.
- M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- R. Cori et al., Shuffle of parenthesis systems and Baxter permutations, J. Combin. Theory, A 43 (1986), 1-22.
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Zhicong Lin, David G.L. Wang, and Tongyuan Zhao, A decomposition of ballot permutations, pattern avoidance and Gessel walks, arXiv:2103.04599 [math.CO], 2021.
- Zhicong Lin and Jing Liu, Proof of Dilks' bijectivity conjecture on Baxter permutations, arXiv:2112.11698 [math.CO], 2021.
- Alon Regev, Amitai Regev, and Doron Zeilberger, Identities in character tables of S_n, arXiv preprint arXiv:1507.03499 [math.CO], 2015.
- N. A. Rosenberg, Counting coalescent histories, J. Comput. Biol. 14 (2007), 360-377.
- Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
-
[Catalan(n div 2)*Catalan(((n+1)) div 2) : n in [1..30]]; // Vincenzo Librandi, Apr 16 2019
-
c := n->binomial(2*n,n)/(n+1); seq(c(floor((n+1)/2))*c(floor(n/2+1)), n=0..16);
-
Table[Binomial[2*Floor[(n+1)/2], Floor[(n+1)/2]]/(Floor[(n+1)/2]+1) * Binomial[2*Floor[n/2+1], Floor[n/2+1]]/(Floor[n/2+1]+1), {n,0,20}] (* Vaclav Kotesovec, Sep 11 2013 *)
-
c(n)=binomial(2*n, n)/(n+1)
for(n=1, 40, print1(c(floor((n+1)/2))*c(floor(n/2+1)), ", ")); \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Description corrected Feb 15 1997.
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
A064037
Number of walks of length 2n on cubic lattice, starting and finishing at origin and staying in first (nonnegative) octant.
Original entry on oeis.org
1, 3, 24, 285, 4242, 73206, 1403028, 29082339, 640672890, 14818136190, 356665411440, 8874875097270, 227135946200940, 5955171596514900, 159439898653636320, 4347741997166750235, 120493374240909299130, 3387806231071627372590, 96488484001399878973200
Offset: 0
a(1)=3 and a(2)=24 since if the possible steps are Right, Left, Up, Down, Forwards and Backwards, then the two-step paths are FB, RL and UD, while the four-step paths are FBFB, FBRL, FBUD, FFBB, FRBL, FRLB, FUBD, FUDB, RFBL, RFLB, RLFB, RLRL, RLUD, RRLL, RUDL, RULD, UDFB, UDRL, UDUD, UFBD, UFDB, URDL, URLD, UUDD.
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- James Mallos, A 6-Letter 'DNA' for Baskets with Handles, Mathematics (2019) Vol. 7, No. 2, 165.
- G. Xin, Determinant formulas relating to tableaux of bounded height, Adv. Appl. Math. 45 (2010) 197-211.
-
f := -3*x+(1+sqrt(1-40*x+144*x^2))/4;
H := (1-2*f)*f*hypergeom([1/6,1/3],[1],27*(1-2*f)*f^2)^2/sqrt(1+6*f);
r2 := (1-4*x)*(36*x-1)*(1920*x^2+166*x+1)*x^2;
r1 := -(138240*x^4+7776*x^3+200*x^2-92*x-1)*x;
r0 := 19800*x^3+764*x^2-86*x-1;
ogf := (r2*diff(H,x,x)+r1*diff(H,x)+r0*H)/(5760*x^4) + 1/(2*x);
series(ogf, x=0, 30); # Mark van Hoeij, Apr 19 2013
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 2*n+1, ((8*n-4)*(5*n^2+10*n+3)
*a(n-1)-36*(2*n-1)*(2*n-3)*(n-1)*a(n-2))/((n+1)*(n+2)*(n+3)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Mar 29 2019
-
Table[Sum[Binomial[2*n, 2*j] * CatalanNumber[j] * CatalanNumber[j+1] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 09 2019 *)
-
C(n,k) = binomial(n,k);
c(n) = binomial(2*n,n)/(n+1);
a(n) = sum(j=0,n, C(2*n, 2*j)*c(j)*c(j+1)*c(n-j));
/* Joerg Arndt, Apr 19 2013 */
A000356
Number of rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle: (2n)!(2n+1)! / (n!^2*(n+1)!(n+2)!).
Original entry on oeis.org
1, 5, 35, 294, 2772, 28314, 306735, 3476330, 40831076, 493684828, 6114096716, 77266057400, 993420738000, 12964140630900, 171393565105575, 2291968851019650, 30961684478686500, 422056646314726500
Offset: 1
- Amitai Regev, Preprint. [From Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..800
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- Anatol N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 034, 56 p. (2016).
- W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), 402-417.
- W. T. Tutte, On the enumeration of four-colored maps, SIAM J. Appl. Math., 17 (1969), 454-460.
-
A000356 := proc(n)
binomial(2*n,n)*binomial(2*n+1,n+1)/(n+1)/(n+2) ;
end proc:
-
CoefficientList[ Series[1 + (HypergeometricPFQ[{1, 3/2, 5/2}, {3, 4}, 16 x] - 1), {x, 0, 17}], x]
Table[(2*n)!*(2*n+2)!/(2*n!*(n+1)!^2*(n+2)!),{n,30}] (* Vincenzo Librandi, Mar 25 2012 *)
A004304
Number of nonseparable planar tree-rooted maps with n edges.
Original entry on oeis.org
1, 2, 2, 6, 28, 160, 1036, 7294, 54548, 426960, 3463304, 28910816, 247104976, 2154192248, 19097610480, 171769942086, 1564484503044, 14407366963440, 133978878618904, 1256799271555872, 11881860129979440
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- Dov Tamari, Monoïdes préordonnés et chaînes de Malcev, Bulletin de la Société Mathématique de France, Volume 82 (1954), 53-96. See end of Appendix II.
- T. R. S. Walsh, A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259. See Table IVc.
-
A004304 := proc(n) local N,x,ode ; Order := n+1 ; ode := x^2*diff(N(x),x,x)*(N(x)^3-16*x*N(x)) ; ode := ode + (x*diff(N(x),x))^3*(16-6*N(x)) ; ode := ode + (x*diff(N(x),x))^2*(12*N(x)^2-16*x-24*N(x)) ; ode := ode + x*diff(N(x),x)*(-8*N(x)^3+24*x*N(x)+12*N(x)^2) ; ode := ode + 2*N(x)^2*(N(x)^2-N(x)-6*x) ; dsolve({ode=0,N(0)=1,D(N)(0)=2},N(x),type=series) ; convert(%,polynom) ; rhs(%) ; RETURN( coeftayl(%,x=0,n)) ; end; for n from 0 to 20 do printf("%d,",A004304(n)) ; od ; # R. J. Mathar, Aug 18 2006
-
m = 22;
F[x_] = Sum[2 (2n+1) Binomial[2n, n]^2 x^n/((n+2)(n+1)^2), {n, 0, m}];
A[x_] = (x/InverseSeries[x F[x]^2 + O[x]^m, x])^(1/2);
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 28 2020 *)
-
{a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2)^2))^(1/2),n)} \\ Paul D. Hanna, Nov 26 2009
-
seq(N) = {
my(c(n)=binomial(2*n,n)/(n+1), s=Ser(apply(n->c(n)*c(n+1), [0..N])));
Vec(subst(s, 'x, serreverse('x*s^2)));
};
seq(20)
\\ test: y=Ser(seq(200)); 0 == x^2*y''*(y^3 - 16*x*y) + (x*y')^3*(16-6*y) + (x*y')^2*(12*y^2-16*x-24*y) + x*y'*(-8*y^3 + 24*x*y + 12*y^2) + 2*y^2*(y^2-y-6*x)
\\ Gheorghe Coserea, Jun 13 2018
A067640
Table T(n,k) giving number of two-legged knot diagrams with n >= 0 self-intersections and k >= 0 tangencies, read by antidiagonals.
Original entry on oeis.org
1, 2, 2, 8, 20, 10, 42, 174, 210, 70, 260, 1504, 2992, 2352, 588, 1796, 13300, 37100, 47820, 27720, 5544, 13396, 120744, 433620, 784672, 742296, 339768, 56628, 105706, 1122198, 4928798, 11515714, 15294006, 11376554, 4294290
Offset: 0
Table begins
1 2 10 70 588 5544 56628 ...
2 20 210 2352 27720 339768 4294290 ...
8 174 2992 47820 742296 11376554 173401952 ...
42 1504 37100 784672 15294006 283730240 5095814988 ...
260 13300 433620 11515714 271846056 5947557516 123429078160 ...
1796 120744 4928798 158295072 4403552940 111289501120 2626033507768 ...
...
More terms from Larry Reeves (larryr(AT)acm.org), Apr 08 2002
A172392
a(n) = C(2n,n)*C(2n+2,n+1)/(n+2).
Original entry on oeis.org
1, 4, 30, 280, 2940, 33264, 396396, 4907760, 62573940, 816621520, 10861066216, 146738321184, 2008917492400, 27815780664000, 388924218927000, 5484594083378400, 77926940934668100, 1114620641232714000
Offset: 0
G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2940*x^4 + 33264*x^5 +...
A(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
where A(x)^2 = G(x*A(x)^2) and G(x) = A(x/G(x))^2 = g.f. of A172391:
A172391=[1,8,12,0,28,0,264,0,3720,0,63840,0,1232432,0,25731216,0,...].
-
A172392 := n -> 4^n*coeff(simplify(hypergeom([3/2, -2*n], [3], -x)),x,n):
seq(A172392(n), n=0..17); # Peter Luschny, Feb 03 2015
-
CoefficientList[
Series[HypergeometricPFQ[{1/2, 3/2}, {3}, 16 x], {x, 0, 20}], x] (* From Olivier Gérard, Feb 15 2011 *)
Table[(Binomial[2n,n]Binomial[2n+2,n+1])/(n+2),{n,0,30}] (* Harvey P. Dale, Jul 16 2012 *)
-
{a(n)=binomial(2*n,n)*binomial(2*n+2,n+1)/(n+2)}
A060897
Number of walks of length n on square lattice, starting at origin, staying in first and third quadrants.
Original entry on oeis.org
1, 4, 12, 44, 144, 528, 1808, 6676, 23536, 87568, 315136, 1180680, 4314560, 16263896, 60138816, 227899484, 850600944, 3238194560, 12177384544, 46542879384, 176110444736, 675431779856, 2568878867200, 9882068082112, 37747540858240, 145593279888736, 558190182662144
Offset: 0
-
\\ here B is A005566 and C is aerated A005568 as g.f.'s.
B(n)={sum(n=0, n, x^n*binomial(n, n\2)*binomial(n+1, (n+1)\2), O(x*x^n))}
C(n)={sum(n=0, (n+1)\2, x^(2*n)*binomial(2*n,n)*binomial(2*n+2,n+1)/((n+1)*(n+2)), O(x*x^n))}
seq(n) = {Vec( 1 + 2*(B(n)-1)/(2-C(n)) )} \\ Andrew Howroyd, Jan 05 2023
A168451
Self-convolution of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.
Original entry on oeis.org
1, 4, 8, 20, 84, 456, 2860, 19708, 145120, 1122680, 9023784, 74777248, 635292016, 5510485600, 48644137764, 435920025116, 3957758805776, 36345636909032, 337159090063880, 3155827384249824, 29776934546342464, 283001546964599248
Offset: 0
G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...
A(x)^(1/2) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568:
F(x) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A000108(n)*A000108(n+1)*x^n +...
F(x)^2 = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 + 152092*x^6 +...+ A168452(n)*x^n +...
-
{a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2)^2)),n)}
A342982
Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges and k+1 faces, n >= 0, k = 0..n.
Original entry on oeis.org
1, 1, 1, 2, 6, 2, 5, 30, 30, 5, 14, 140, 280, 140, 14, 42, 630, 2100, 2100, 630, 42, 132, 2772, 13860, 23100, 13860, 2772, 132, 429, 12012, 84084, 210210, 210210, 84084, 12012, 429, 1430, 51480, 480480, 1681680, 2522520, 1681680, 480480, 51480, 1430
Offset: 0
Triangle begins:
1;
1, 1;
2, 6, 2;
5, 30, 30, 5;
14, 140, 280, 140, 14;
42, 630, 2100, 2100, 630, 42;
132, 2772, 13860, 23100, 13860, 2772, 132;
429, 12012, 84084, 210210, 210210, 84084, 12012, 429;
...
-
Table[(2 n)!/(k!*(k + 1)!*(n - k)!*(n - k + 1)!), {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
-
T(n,k) = {(2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!)}
{ for(n=0, 10, print(vector(n+1, k, T(n,k-1)))) }
Showing 1-10 of 23 results.
Comments