cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A168452 Self-convolution of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).

Original entry on oeis.org

1, 4, 24, 180, 1556, 14840, 152092, 1646652, 18613664, 217852008, 2623657384, 32361812912, 407342311632, 5217211974832, 67836910362772, 893766246630572, 11913422912188432, 160450066324972472, 2181014117345997704, 29894260817385950064, 412839378639052110464
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 +...
A(x)^(1/2) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A005568(n)*x^n +...
A(x) satisfies: A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A004304:
G(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
G(x)^2 = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...+ A168451(n)*x^n +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 4, 24][n+1],
          (12*n*(n+1)*(16*n^4+68*n^3+44*n^2-63*n-25) *a(n-1)
           -(3072*n^6+768*n^5-8448*n^4+1152*n^3+3264*n^2-288) *a(n-2)
           +1024*n*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(4*n+1) *a(n-3)) /
          ((n+1)^2*(n+2)*(n+3)*(n+4)*(4*n-3)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 20 2013
  • Mathematica
    c[n_] := CatalanNumber[n]*CatalanNumber[n+1]; a[n_] := ListConvolve[cc = Array[c, n+1, 0], cc][[1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 22 2017 *)
  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff(Ser(C_2)^2,n)}

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)^2) where G(x) = g.f. of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.
G.f.: A(x) = G(x*A(x))^2 where A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A004304.
a(n) ~ c * 16^n / n^3, where c = 3.07968404... . - Vaclav Kotesovec, Sep 12 2014
Conjecture D-finite with recurrence 3*(n+4)*(n+3)*(n+2)*(n+1)^2*a(n) -4*n*(n+1) *(32*n^3+164*n^2+233*n+75)*a(n-1) +96*(16*n^5+24*n^4-14*n^3-28*n^2-16*n+3) *a(n-2) +1536*(-8*n^4+22*n^3-32*n+15)*a(n-3) -16384*(2*n-5)*(n-1)*(n-2)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Nov 22 2024

Extensions

Typo in formula corrected by Paul D. Hanna, Nov 28 2009

A005817 a(n) = C(floor(n/2 + 1/2))*C(floor(n/2 + 1)) where C(i) = Catalan numbers A000108.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 70, 196, 588, 1764, 5544, 17424, 56628, 184041, 613470, 2044900, 6952660, 23639044, 81662152, 282105616, 987369656, 3455793796, 12228193432, 43268992144, 154532114800, 551900410000, 1986841476000, 7152629313600
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths in the first quadrant that do not cross the main diagonal, go from (0,0) to a point on the x-axis and consist of n+1 steps from the set {E=(1,0), W=(-1,0), N=(0,1), S=(0,-1)}. Example: a(2)=4 because we have EEE, ENS, EEW and EWE [Gouyou-Beauchamps]. - Emeric Deutsch, Apr 29 2004
Also, number of standard Young tableaux of height <= 4. - Mike Zabrocki, Mar 24 2007
Also, number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 1), (0, -1), (0, 1), (1, -1)}. - Manuel Kauers, Nov 18 2008
Also, number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, -1, 1), (0, 1, 0), (1, 0, -1)} - Manuel Kauers, Nov 18 2008
Also, number of n-length words w over alphabet {a,b,c,d} such that for every prefix z of w we have #(z,a) >= #(z,b) >= #(z,c)>= #(z,d), where #(z,x) counts the letters x in word z. The a(4) = 10 words are: aaaa, aaab, aaba, abaa, aabb, abab, aabc, abac, abca, abcd. - Alois P. Heinz, May 30 2012
Also, for n>0, number of coalescent histories for a maximally symmetric matching bicaterpillar gene tree and species tree with n+1 leaves, that is, a bicaterpillar divided into caterpillars of size floor(n/2+1/2) and floor(n/2+1) leaves (Rosenberg 2007, Theorem 3.10). - Noah A Rosenberg, Feb 04 2019

Examples

			There are 26 standard tableaux of size 5, one of them is of length longer than 4 so a(5) = 25.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), y_4(n), p. 452.

Crossrefs

Bisections are A001246 and A005568.
Column k=4 of A182172. - Alois P. Heinz, May 30 2012

Programs

  • Magma
    [Catalan(n div 2)*Catalan(((n+1)) div 2) : n in [1..30]]; // Vincenzo Librandi, Apr 16 2019
  • Maple
    c := n->binomial(2*n,n)/(n+1); seq(c(floor((n+1)/2))*c(floor(n/2+1)), n=0..16);
  • Mathematica
    Table[Binomial[2*Floor[(n+1)/2], Floor[(n+1)/2]]/(Floor[(n+1)/2]+1) * Binomial[2*Floor[n/2+1], Floor[n/2+1]]/(Floor[n/2+1]+1), {n,0,20}] (* Vaclav Kotesovec, Sep 11 2013 *)
  • PARI
    c(n)=binomial(2*n, n)/(n+1)
    for(n=1, 40, print1(c(floor((n+1)/2))*c(floor(n/2+1)), ", ")); \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
    

Formula

G.f.: (hypergeom([-1/2, -1/2],[1],16*x^2)-2*x*hypergeom([-1/2, 1/2],[2],16*x^2)-1+2*x-4*x^2)/(4*x^3). - Mark van Hoeij, Oct 25 2011
D-finite with recurrence (n+3)*(n+4)*a(n) = 4*(2*n+3)*a(n-1) + 16*(n-1)*n*a(n-2). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ 2^(2*n+5)/(Pi*n^3). - Vaclav Kotesovec, Sep 11 2013

Extensions

Description corrected Feb 15 1997.
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Offset changed by N. J. A. Sloane, Nov 28 2008

A064037 Number of walks of length 2n on cubic lattice, starting and finishing at origin and staying in first (nonnegative) octant.

Original entry on oeis.org

1, 3, 24, 285, 4242, 73206, 1403028, 29082339, 640672890, 14818136190, 356665411440, 8874875097270, 227135946200940, 5955171596514900, 159439898653636320, 4347741997166750235, 120493374240909299130, 3387806231071627372590, 96488484001399878973200
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Examples

			a(1)=3 and a(2)=24 since if the possible steps are Right, Left, Up, Down, Forwards and Backwards, then the two-step paths are FB, RL and UD, while the four-step paths are FBFB, FBRL, FBUD, FFBB, FRBL, FRLB, FUBD, FUDB, RFBL, RFLB, RLFB, RLRL, RLUD, RRLL, RUDL, RULD, UDFB, UDRL, UDUD, UFBD, UFDB, URDL, URLD, UUDD.
		

Crossrefs

Cf. A064036. The two- and one-dimensional equivalents are A005568 and A000108.

Programs

  • Maple
    f := -3*x+(1+sqrt(1-40*x+144*x^2))/4;
    H := (1-2*f)*f*hypergeom([1/6,1/3],[1],27*(1-2*f)*f^2)^2/sqrt(1+6*f);
    r2 := (1-4*x)*(36*x-1)*(1920*x^2+166*x+1)*x^2;
    r1 := -(138240*x^4+7776*x^3+200*x^2-92*x-1)*x;
    r0 := 19800*x^3+764*x^2-86*x-1;
    ogf := (r2*diff(H,x,x)+r1*diff(H,x)+r0*H)/(5760*x^4) + 1/(2*x);
    series(ogf, x=0, 30); # Mark van Hoeij, Apr 19 2013
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 2*n+1, ((8*n-4)*(5*n^2+10*n+3)
           *a(n-1)-36*(2*n-1)*(2*n-3)*(n-1)*a(n-2))/((n+1)*(n+2)*(n+3)))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 29 2019
  • Mathematica
    Table[Sum[Binomial[2*n, 2*j] * CatalanNumber[j] * CatalanNumber[j+1] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 09 2019 *)
  • PARI
    C(n,k) = binomial(n,k);
    c(n) = binomial(2*n,n)/(n+1);
    a(n) = sum(j=0,n, C(2*n, 2*j)*c(j)*c(j+1)*c(n-j));
    /* Joerg Arndt, Apr 19 2013 */

Formula

a(n) = Sum_{j=0..n} C(2n, 2j)*c(j)*c(j+1)*c(n-j) where c(k)=A000108(k).
G.f. is a large expression in terms of hypergeometric functions and sqrt's, see Maple program. - Mark van Hoeij, Apr 19 2013
a(n) = binomial(2*n,n)*((7*n+11)*A002893(n+1)-(9*n+9)*A002893(n))/(2*(n+1)*(n+2)^2*(n+3)). - Mark van Hoeij, Apr 19 2013
a(n) ~ 2^(2*n - 2) * 3^(2*n + 9/2) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Jun 09 2019
D-finite with recurrence: (n+3)*(n+2)*(n+1)*a(n) -4*(2*n-1)*(5*n^2+10*n+3)*a(n-1) +36*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 20 2020

Extensions

Added more terms, Joerg Arndt, Apr 19 2013

A000356 Number of rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle: (2n)!(2n+1)! / (n!^2*(n+1)!(n+2)!).

Original entry on oeis.org

1, 5, 35, 294, 2772, 28314, 306735, 3476330, 40831076, 493684828, 6114096716, 77266057400, 993420738000, 12964140630900, 171393565105575, 2291968851019650, 30961684478686500, 422056646314726500
Offset: 1

Views

Author

Keywords

Comments

a(2n-1) is also the sum of the numbers of standard Young tableaux of size 2n+1 and of shapes (k+3,k+2,2^{n-2-k}), 0 <= k <= n-2. - Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010

References

  • Amitai Regev, Preprint. [From Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A005568/2.
Fourth row of array A102539.
Column of array A073165.
Image of A001700 under the "little Hankel" transform (see A056220 for definition). - John W. Layman, Aug 22 2000
Cf. A000891.

Programs

  • Maple
    A000356 := proc(n)
        binomial(2*n,n)*binomial(2*n+1,n+1)/(n+1)/(n+2) ;
    end proc:
  • Mathematica
    CoefficientList[ Series[1 + (HypergeometricPFQ[{1, 3/2, 5/2}, {3, 4}, 16 x] - 1), {x, 0, 17}], x]
    Table[(2*n)!*(2*n+2)!/(2*n!*(n+1)!^2*(n+2)!),{n,30}] (* Vincenzo Librandi, Mar 25 2012 *)

Formula

G.f.: (with offset 0) 3F2( [1, 3/2, 5/2], [3, 4], 16*x) = (1 - 2*x - 2F1( [-1/2, 1/2], [2], 16*x) ) / (4*x^2). - Olivier Gérard, Feb 16 2011
a(n)*(n+2) = A000891(n). - Gary W. Adamson, Apr 08 2011
D-finite with recurrence (n+2)*(n+1)*a(n)-4*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 03 2013
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: (1/2)*(2F2(1/2,3/2; 2,3; 16*x) - 1).
a(n) ~ 2^(4*n+1)/(Pi*n^3). (End)
From Peter Bala, Feb 22 2023: (Start)
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 3)/(i + j - 1).
a(n) = (2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 3)/(i + j) for n >= 1.
Cf. A003645. (End)

Extensions

Better definition from Michael Albert, Oct 24 2008

A004304 Number of nonseparable planar tree-rooted maps with n edges.

Original entry on oeis.org

1, 2, 2, 6, 28, 160, 1036, 7294, 54548, 426960, 3463304, 28910816, 247104976, 2154192248, 19097610480, 171769942086, 1564484503044, 14407366963440, 133978878618904, 1256799271555872, 11881860129979440
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000264.

Programs

  • Maple
    A004304 := proc(n) local N,x,ode ; Order := n+1 ; ode := x^2*diff(N(x),x,x)*(N(x)^3-16*x*N(x)) ; ode := ode + (x*diff(N(x),x))^3*(16-6*N(x)) ; ode := ode + (x*diff(N(x),x))^2*(12*N(x)^2-16*x-24*N(x)) ; ode := ode + x*diff(N(x),x)*(-8*N(x)^3+24*x*N(x)+12*N(x)^2) ; ode := ode + 2*N(x)^2*(N(x)^2-N(x)-6*x) ; dsolve({ode=0,N(0)=1,D(N)(0)=2},N(x),type=series) ; convert(%,polynom) ; rhs(%) ; RETURN( coeftayl(%,x=0,n)) ; end; for n from 0 to 20 do printf("%d,",A004304(n)) ; od ; # R. J. Mathar, Aug 18 2006
  • Mathematica
    m = 22;
    F[x_] = Sum[2 (2n+1) Binomial[2n, n]^2 x^n/((n+2)(n+1)^2), {n, 0, m}];
    A[x_] = (x/InverseSeries[x F[x]^2 + O[x]^m, x])^(1/2);
    CoefficientList[A[x], x] (* Jean-François Alcover, Mar 28 2020 *)
  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2)^2))^(1/2),n)} \\ Paul D. Hanna, Nov 26 2009
    
  • PARI
    seq(N) = {
      my(c(n)=binomial(2*n,n)/(n+1), s=Ser(apply(n->c(n)*c(n+1), [0..N])));
      Vec(subst(s, 'x, serreverse('x*s^2)));
    };
    seq(20)
    \\ test: y=Ser(seq(200)); 0 == x^2*y''*(y^3 - 16*x*y) + (x*y')^3*(16-6*y) + (x*y')^2*(12*y^2-16*x-24*y) + x*y'*(-8*y^3 + 24*x*y + 12*y^2) + 2*y^2*(y^2-y-6*x)
    \\ Gheorghe Coserea, Jun 13 2018

Formula

From Paul D. Hanna, Nov 26 2009: (Start)
G.f.: A(x) = [x/Series_Reversion(x*F(x)^2)]^(1/2) where F(x) = g.f. of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).
G.f.: A(x) = F(x/A(x)^2) where A(x*F(x)^2) = F(x) where F(x) = g.f. of A005568.
G.f.: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) where F(x) = g.f. of A168450.
G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = g.f. of A168450.
Self-convolution yields A168451.
(End)

Extensions

More terms from R. J. Mathar, Aug 18 2006

A067640 Table T(n,k) giving number of two-legged knot diagrams with n >= 0 self-intersections and k >= 0 tangencies, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 8, 20, 10, 42, 174, 210, 70, 260, 1504, 2992, 2352, 588, 1796, 13300, 37100, 47820, 27720, 5544, 13396, 120744, 433620, 784672, 742296, 339768, 56628, 105706, 1122198, 4928798, 11515714, 15294006, 11376554, 4294290
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2002

Keywords

Examples

			Table begins
     1      2      10        70        588         5544         56628 ...
     2     20     210      2352      27720       339768       4294290 ...
     8    174    2992     47820     742296     11376554     173401952 ...
    42   1504   37100    784672   15294006    283730240    5095814988 ...
   260  13300  433620  11515714  271846056   5947557516  123429078160 ...
  1796 120744 4928798 158295072 4403552940 111289501120 2626033507768 ...
  ...
		

Crossrefs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 08 2002

A172392 a(n) = C(2n,n)*C(2n+2,n+1)/(n+2).

Original entry on oeis.org

1, 4, 30, 280, 2940, 33264, 396396, 4907760, 62573940, 816621520, 10861066216, 146738321184, 2008917492400, 27815780664000, 388924218927000, 5484594083378400, 77926940934668100, 1114620641232714000
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2010

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2940*x^4 + 33264*x^5 +...
A(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
where A(x)^2 = G(x*A(x)^2) and G(x) = A(x/G(x))^2 = g.f. of A172391:
A172391=[1,8,12,0,28,0,264,0,3720,0,63840,0,1232432,0,25731216,0,...].
		

Crossrefs

Programs

  • Maple
    A172392 := n -> 4^n*coeff(simplify(hypergeom([3/2, -2*n], [3], -x)),x,n):
    seq(A172392(n), n=0..17); # Peter Luschny, Feb 03 2015
  • Mathematica
    CoefficientList[
    Series[HypergeometricPFQ[{1/2, 3/2}, {3}, 16 x], {x, 0, 20}], x] (* From Olivier Gérard, Feb 15 2011 *)
    Table[(Binomial[2n,n]Binomial[2n+2,n+1])/(n+2),{n,0,30}] (* Harvey P. Dale, Jul 16 2012 *)
  • PARI
    {a(n)=binomial(2*n,n)*binomial(2*n+2,n+1)/(n+2)}

Formula

G.f. A(X) satisfies: A(x)^2 = G(x*A(x)^2) and G(x) = A(x/G(x))^2 = g.f. of A172391.
G.f. A(X) satisfies: A(x) = G(x*A(x)^2) and G(x) = A(x/G(x)^2) = g.f. of A172393.
a(n) = (n+1)*A005568(n) = A000108(n+1)*A000984(n), where A000108 is the Catalan numbers and A000984 is the central binomial coefficients.
G.f. : 2F1( (1/2, 3/2); (3))(16 x). - Olivier Gérard Feb 15 2011
a(n) = 4^n*[x^n]hypergeom([3/2, -2*n], [3], -x). - Peter Luschny, Feb 03 2015
D-finite with recurrence a(n) = a(n-1)*( 4*(4*n^2-1)/(n*(n+2)) ) for n>=1. - Peter Luschny, Feb 04 2015

A060897 Number of walks of length n on square lattice, starting at origin, staying in first and third quadrants.

Original entry on oeis.org

1, 4, 12, 44, 144, 528, 1808, 6676, 23536, 87568, 315136, 1180680, 4314560, 16263896, 60138816, 227899484, 850600944, 3238194560, 12177384544, 46542879384, 176110444736, 675431779856, 2568878867200, 9882068082112, 37747540858240, 145593279888736, 558190182662144
Offset: 0

Views

Author

David W. Wilson, May 05 2001

Keywords

Comments

Is there a formula analogous to the (conjectured) formula for A060900?
Could be broken into the number of walks that are constrained to a quadrant and the number that cross the origin. (I.e., 2*A005566(n) + 2*A005566(n-2)*A005568(1) + 2*A005566(n-4)*A005568(2) + ... + All terms that cross the origin twice + three times + ... + Cross floor(n/2) times.) - Benjamin Phillabaum, Mar 13 2011

Crossrefs

Programs

  • PARI
    \\ here B is A005566 and C is aerated A005568 as g.f.'s.
    B(n)={sum(n=0, n, x^n*binomial(n, n\2)*binomial(n+1, (n+1)\2), O(x*x^n))}
    C(n)={sum(n=0, (n+1)\2, x^(2*n)*binomial(2*n,n)*binomial(2*n+2,n+1)/((n+1)*(n+2)), O(x*x^n))}
    seq(n) = {Vec( 1 + 2*(B(n)-1)/(2-C(n)) )} \\ Andrew Howroyd, Jan 05 2023

Formula

G.f.: 1 + 2*(B(x)-1)/(2 - C(x^2)) where B(x) is the g.f. of A005566 and C(x) is the g.f. of A005568. - Andrew Howroyd, Jan 05 2023

A168451 Self-convolution of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.

Original entry on oeis.org

1, 4, 8, 20, 84, 456, 2860, 19708, 145120, 1122680, 9023784, 74777248, 635292016, 5510485600, 48644137764, 435920025116, 3957758805776, 36345636909032, 337159090063880, 3155827384249824, 29776934546342464, 283001546964599248
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...
A(x)^(1/2) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568:
F(x) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A000108(n)*A000108(n+1)*x^n +...
F(x)^2 = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 + 152092*x^6 +...+ A168452(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2)^2)),n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*F(x)^2) where F(x) = g.f. of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).
G.f.: A(x) = F(x/A(x))^2 where A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568.

A342982 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges and k+1 faces, n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 2, 6, 2, 5, 30, 30, 5, 14, 140, 280, 140, 14, 42, 630, 2100, 2100, 630, 42, 132, 2772, 13860, 23100, 13860, 2772, 132, 429, 12012, 84084, 210210, 210210, 84084, 12012, 429, 1430, 51480, 480480, 1681680, 2522520, 1681680, 480480, 51480, 1430
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 1 - k.
A tree-rooted planar map is a planar map with a distinguished spanning tree.

Examples

			Triangle begins:
    1;
    1,     1;
    2,     6,     2;
    5,    30,    30,      5;
   14,   140,   280,    140,     14;
   42,   630,  2100,   2100,    630,    42;
  132,  2772, 13860,  23100,  13860,  2772,   132;
  429, 12012, 84084, 210210, 210210, 84084, 12012, 429;
  ...
		

Crossrefs

Columns k=0..2 are A000108, A002457, 2*A002803.
Row sums are A005568.
Central coefficients are A342983.

Programs

  • Mathematica
    Table[(2 n)!/(k!*(k + 1)!*(n - k)!*(n - k + 1)!), {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
  • PARI
    T(n,k) = {(2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!)}
    { for(n=0, 10, print(vector(n+1, k, T(n,k-1)))) }

Formula

T(n,k) = (2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!).
T(n,n-k) = T(n,k).
T(n, floor(n/2)) = A215288(n).
T(n,k) = A000108(n) * A001263(n+1,k+1). - Werner Schulte, Apr 04 2021
Showing 1-10 of 23 results. Next