cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A067637 Row 2 of table in A067640.

Original entry on oeis.org

8, 174, 2992, 47820, 742296, 11376554, 173401952
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2002

Keywords

A067638 Row 3 of table in A067640.

Original entry on oeis.org

42, 1504, 37100, 784672, 15294006, 283730240, 5095814988
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2002

Keywords

A067639 Row 4 of table in A067640.

Original entry on oeis.org

260, 13300, 433620, 11515714, 271846056, 5947557516, 123429078160
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2002

Keywords

A067636 Row 1 of table in A067640.

Original entry on oeis.org

2, 20, 210, 2352, 27720, 339768, 4294290, 55621280, 734959368, 9873696560, 134510127752, 1854385377600, 25828939188000, 362995937665200, 5141806953167250, 73343003232628800, 1052697272275341000, 15194039267330154000, 220410039466873456200
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2002

Keywords

Crossrefs

Cf. A005568 (row 0), A067637 (row 2), A067638 (row 3), A067639 (row 4).

Programs

  • Maple
    seq((2*n+2)!*(2*n+4)!/(n!*((n+2)!)^2*(n+3)!),n=0..30); # James Sellers, Feb 11 2002; adapted to offset 0 by Georg Fischer, May 29 2021
  • Mathematica
    RecurrenceTable[{n*(n+2)*(n+3)*a[n] - 4*(n+1)*(2*n+1)*(2*n+3)*a[n-1] == 0, a[0]==2},a,{n,0,16}] (* Georg Fischer, May 29 2021 *)

Formula

a(n) = (2*n+2)!*(2*n+4)!/(n!*((n+2)!)^2*(n+3)!). [adapted to offset 0 by Georg Fischer, May 29 2021]
D-finite with recurrence: a(0) = 2, n*(n+2)*(n+3)*a(n) - 4*(n+1)*(2*n+1)*(2*n+3)*a(n-1) = 0 for n >= 1. - Georg Fischer, May 29 2021
a(n) ~ 2^(4*n + 6) / (Pi*n^2). - Vaclav Kotesovec, May 29 2021

Extensions

More terms from James Sellers, Feb 11 2002

A067641 Column 1 of table in A067640.

Original entry on oeis.org

2, 20, 174, 1504, 13300, 120744, 1122198, 10638464, 102541428, 1002305040, 9914663308, 99085515840, 999104604784, 10153152363648, 103892246982390, 1069610792999424, 11072575568623300, 115189593628215600
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2002

Keywords

A067642 Column 2 of table in A067640.

Original entry on oeis.org

10, 210, 2992, 37100, 433620, 4928798, 55237824, 614451348, 6807871480, 75275707584, 831595048320, 9185000522880, 101470031154352, 1121497913694390, 12403035430713344, 137266650274351716
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2002

Keywords

A067643 Column 3 of table in A067640.

Original entry on oeis.org

70, 2352, 47820, 784672, 11515714, 158295072, 2086803540, 26737722400, 335676172480, 4150940757440, 50739269522864, 614607881444256, 7390867767651290
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2002

Keywords

A054993 Number of "long curves", i.e., topological types of smooth embeddings of the oriented real line into the oriented plane that coincide with the standard immersion x -> (x,0) in the neighborhood of -infinity and +infinity.

Original entry on oeis.org

1, 2, 8, 42, 260, 1796, 13396, 105706, 870772, 7420836, 65004584, 582521748, 5320936416, 49402687392, 465189744448, 4434492302426, 42731740126228, 415736458808868, 4079436831493480, 40338413922226212, 401652846850965808, 4024556509468827432, 40558226664529024000, 410887438338905738908, 4182776248940752113344, 42770152711524569532616, 439143340987014152920384, 4526179842103708969039296
Offset: 0

Views

Author

Sergei Duzhin, Nov 11 2000

Keywords

Comments

Also the number of knot diagrams with n crossings and two outgoing strings.

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
  • S. M. Gusein-Zade, On the enumeration of curves from infinity to infinity, in: Singularities and Bifurcations, Adv. Sov. Math., v. 21 (1994), pp. 189-198.

Crossrefs

A151374 enumerates the long curves having Gauss diagrams without intersections, cf. A118814.
A column of the triangles in A067640 and A062038.

Extensions

Extended to n = 22 by J. L. Jacobsen and Paul Zinn-Justin, Jan 30 2002
More terms from Paul Zinn-Justin, Dec 13 2016
Showing 1-8 of 8 results.