cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paul Zinn-Justin

Paul Zinn-Justin's wiki page.

Paul Zinn-Justin has authored 4 sequences.

A247591 Dimension of invariants of 2n-th tensor power of 6-dimensional irreducible representation of A_3.

Original entry on oeis.org

1, 1, 3, 16, 126, 1296, 16071, 228514, 3607890, 61891050, 1135871490, 22049362440, 448790912004, 9512960347260, 208858963314735, 4728736078065810, 110006925920592810, 2621619942885055530, 63840054782606886630, 1585094577104979776880, 40054740803371374834780, 1028483346608802276173280
Offset: 0

Author

Paul Zinn-Justin, Sep 20 2014

Keywords

Comments

The 6-dimensional representation is the usual representation of SO(6)=A_3.

Examples

			For 2n=6, there are 15 invariants corresponding to all ways of pairing the 6 indices with the metric tensor, plus one invariant which is the completely skew-symmetric 6-index tensor.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = (4*n*(2*n-1)*(5*n+7)*a[n-1] - 36*(n-1)*(2*n-3)*(2*n-1)*a[n-2]) / ((n+2)*(n+3)^2); Table[a[n], {n, 0, 21}]
  • PARI
    N=66; v=vector(N); v[1]=1; v[2]=1;
    for(n=2, N-1, my(t=n+1); v[t] = (-36*(n-1)*(2*n-3)*(2*n-1)*v[t-2] + 4*n*(2*n-1)*(5*n+7)*v[t-1]) / ((n+2)*(n+3)^2) );
    v \\ Joerg Arndt, Sep 20 2014

Formula

a(n) = (-36*(n-1)*(2*n-3)*(2*n-1)*a(n-2) + 4*n*(2*n-1)*(5*n+7)*a(n-1)) / ((n+2)*(n+3)^2).
a(n) = (9*(n+1)*A005802(n)-(n+5)*A005802(n+1))*binomial(2*n,n)/(2*(n+1)*(n+2)). - Mark van Hoeij, Nov 12 2023

A130306 Degree of the scheme of n X n complex matrices that square to zero.

Original entry on oeis.org

1, 2, 2, 12, 28, 440, 2456, 98448, 1327632, 134302752, 4398726432, 1116577758912, 89104889764288, 56558827752672128, 11021135122877392256, 17451895365397015875840, 8316834448188073547563264, 32799202036840274283669160448, 38271513084756431661704424923648
Offset: 0

Author

Paul Zinn-Justin, Aug 06 2007

Keywords

Examples

			In size 1, the scheme {x^2=0} is of degree 2. in size 2, the scheme of matrices {{m11,m12},{m21,m22}} that square to zero is generically reduced and the corresponding reduced scheme is given by the equations m11+m22=0 and m11^2+m12 m21=0, hence also of degree 2.
		

Crossrefs

Cf. A130294.

Programs

  • Mathematica
    a[1] = 2; a[n_] := If[EvenQ[n], 2^(n/2) Det[Table[Binomial[2i + 2j + 1, 2i], {i, 0, n/2-1}, {j, 0, n/2-1}]], 2^((n-1)/2+1) Det[Table[Binomial[2i + 2j + 3, 2i + 1], {i, 0, (n-1)/2-1}, {j, 0, (n-1)/2-1}]]];
    Array[a, 12] (* Jean-François Alcover, Dec 04 2018 *)

Formula

a(2n) = 2^n * det(binomial(2i+2j+1,2i)), 0<=i,j<=n-1; a(2n+1) = 2^(n+1) * det(binomial(2i+2j+3,2i+1)), 0<=i,j<=n-1.

Extensions

More terms from Alois P. Heinz, Dec 04 2018

A130294 Degree of the n X n Brauer loop scheme. Also, the sum of components of the Brauer loop model in size n.

Original entry on oeis.org

1, 1, 1, 3, 7, 55, 307, 6153, 82977, 4196961, 137460201, 17446527483, 1392263902567, 441865841817751, 86102618147479627, 68171466271082093265, 32487634563234662295169, 64060941478203660710291329, 74749048993664905589266454929, 366627599282115135074804792982963
Offset: 0

Author

Paul Zinn-Justin, Aug 06 2007

Keywords

Crossrefs

Cf. A130306.

Programs

  • Mathematica
    a[n_] := Which[n == 0, 1, n == 1, 1, EvenQ[n], Det[Table[Binomial[2i + 2j + 1, 2i], {i, 0, n/2 - 1}, {j, 0, n/2 - 1}]], True, Det[Table[Binomial[2i + 2j + 3, 2i + 1], {i, 0, (n-1)/2 - 1}, {j, 0, (n-1)/2 - 1}]]];
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 14 2018 *)

Formula

a(2n) = det(binomial(2i+2j+1,2i)), 0<=i,j<=n-1; a(2n+1) = det(binomial(2i+2j+3,2i+1)), 0<=i,j<=n-1.

Extensions

More terms from Alois P. Heinz, Dec 04 2018

A107445 Number of 4n X 4n alternating-sign matrices of type UU.

Original entry on oeis.org

1, 5, 198, 63206, 163170556, 3410501048325, 577465332522075000, 792313244775191409073200, 8810729389390415079342840510816
Offset: 0

Author

Paul Zinn-Justin, May 16 2007, Jun 04 2007

Keywords

Crossrefs

Formula

a(n) = A005156(n)*A059489(n).