cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077854 Expansion of 1/((1-x)*(1-2*x)*(1+x^2)).

Original entry on oeis.org

1, 3, 6, 12, 25, 51, 102, 204, 409, 819, 1638, 3276, 6553, 13107, 26214, 52428, 104857, 209715, 419430, 838860, 1677721, 3355443, 6710886, 13421772, 26843545, 53687091, 107374182, 214748364, 429496729, 858993459, 1717986918, 3435973836, 6871947673
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Partial sums of A007910. - Mircea Merca, Dec 27 2010
This is the decimal representation of the middle column of "Rule 54" elementary cellular automaton. - Karl V. Keller, Jr., Sep 26 2021
This same sequence (except that the offset is changed to 4) is 2^n with the final digit chopped off. - J. Lowell, May 11 2022

Examples

			The sequence in hexadecimal shows the pattern
1, 3, 6, c,
19, 33, 66, cc,
199, 333, 666, ccc,
1999, 3333, 6666, cccc,
19999, 33333, 66666, ccccc,
199999, 333333, 666666, cccccc,
1999999, 3333333, 6666666, ccccccc,
19999999, 33333333, 66666666, cccccccc,
... - _Armands Strazds_, Oct 09 2014
		

Crossrefs

Equals A007909(n+3) - [n congruent 2, 3 mod 4].
Cf. A130306, A043291 (subsequence); A000975, A007910, A133872, A259661 (binary).

Programs

  • Haskell
    import Data.Bits (xor)
    a077854 n = a077854_list !! n
    a077854_list = scanl1 xor $ tail a000975_list :: [Integer]
    -- Reinhard Zumkeller, Jan 04 2013
    
  • Magma
    [Round((2^(n+4)-5)/10): n in [0..40]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    a := proc(n) option remember; if n=0 then RETURN(1); fi; if n=1 then RETURN(3); fi; if n=2 then RETURN(6); fi; if n=3 then RETURN(12); fi; 3*a(n-1)-3*a(n-2)+3*a(n-3)-2*a(n-4); end;
    seq(iquo(2^n,5),n=3..35); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 + x^2)), {x, 0, 32}], x] (* Michael De Vlieger, Mar 29 2016 *)
    LinearRecurrence[{3,-3,3,-2},{1,3,6,12},40] (* Harvey P. Dale, Feb 06 2019 *)
  • PARI
    a(n)=(16<Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    Vec(1/(1-3*x+3*x^2-3*x^3+2*x^4)+O(x^99)) \\ Derek Orr, Oct 26 2014
    
  • Python
    print([2**(n+3)//5 for n in range(50)]) # Karl V. Keller, Jr., Sep 26 2021

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) - 2*a(n-4), with initial values a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 12.
a(n) = (1/10)*(2^(n+4) + (-1)^floor(n/2) - 2*(-1)^floor((n+1)/2) - 5).
Row sums of A130306. - Gary W. Adamson, May 20 2007
a(n) = floor(2^(n+3)/5). - Gary Detlefs, Sep 06 2010
a(n) = round((2^(n+4)-5)/10) = floor((2^(n+3)-1)/5) = ceiling((2^(n+3)-4)/5) = round((2^(n+3)-2)/5); a(n) = a(n-4) + 3*2^(n-1), n > 3. - Mircea Merca, Dec 27 2010
a(n) = 2^(n+1) - 1 - a(n-2); a(n) = a(n-1)/2 for n == 2, 3 (mod 4); a(n) = (a(n-1)-1)/2 for n == 0, 1 (mod 4). - Arie Bos, Apr 06 2013
a(n) = floor(A000975(n+2)*3/5). - Armands Strazds, Oct 18 2014
a(n) = Sum_{k=1..n+3} floor(1 + sin(k*Pi/2 + 3*Pi/4))*2^(n-k+3). - Andres Cicuttin, Mar 28 2016
a(n) = (-15 + 3*2^(3+n) + 2^(1 + n - 4*floor((1+n)/4)) + 2^(2 + n - 4*floor((2+n)/4)))/15. - Andres Cicuttin, Mar 28 2016
a(n) = (16*2^n+(-1)^((2*n-1+(-1)^n)/4)-2*(-1)^((2*n+1-(-1)^n)/4)-5)/10. - Wesley Ivan Hurt, Apr 01 2016

A130294 Degree of the n X n Brauer loop scheme. Also, the sum of components of the Brauer loop model in size n.

Original entry on oeis.org

1, 1, 1, 3, 7, 55, 307, 6153, 82977, 4196961, 137460201, 17446527483, 1392263902567, 441865841817751, 86102618147479627, 68171466271082093265, 32487634563234662295169, 64060941478203660710291329, 74749048993664905589266454929, 366627599282115135074804792982963
Offset: 0

Views

Author

Paul Zinn-Justin, Aug 06 2007

Keywords

Crossrefs

Cf. A130306.

Programs

  • Mathematica
    a[n_] := Which[n == 0, 1, n == 1, 1, EvenQ[n], Det[Table[Binomial[2i + 2j + 1, 2i], {i, 0, n/2 - 1}, {j, 0, n/2 - 1}]], True, Det[Table[Binomial[2i + 2j + 3, 2i + 1], {i, 0, (n-1)/2 - 1}, {j, 0, (n-1)/2 - 1}]]];
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 14 2018 *)

Formula

a(2n) = det(binomial(2i+2j+1,2i)), 0<=i,j<=n-1; a(2n+1) = det(binomial(2i+2j+3,2i+1)), 0<=i,j<=n-1.

Extensions

More terms from Alois P. Heinz, Dec 04 2018
Showing 1-2 of 2 results.