cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: J. Lowell

J. Lowell's wiki page.

J. Lowell has authored 273 sequences. Here are the ten most recent ones:

A374667 Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) = c_n * F(k)/F(k+2) where c_n = LCM of F(3), F(4), ... F(n+2) (and F() are the Fibonacci numbers).

Original entry on oeis.org

1, 3, 2, 15, 10, 12, 60, 40, 48, 45, 780, 520, 624, 585, 600, 5460, 3640, 4368, 4095, 4200, 4160, 92820, 61880, 74256, 69615, 71400, 70720, 70980, 1021020, 680680, 816816, 765765, 785400, 777920, 780780, 779688, 90870780, 60580520, 72696624, 68153085, 69900600, 69234880, 69489420, 69392232, 69429360
Offset: 1

Author

J. Lowell, Jul 15 2024

Keywords

Examples

			Triangle begins:
      1;
      3,     2;
     15,    10,    12;
     60,    40,    48,    45;
    780,   520,   624,   585,   600;
   5460,  3640,  4368,  4095,  4200,  4160;
  92820, 61880, 74256, 69615, 71400, 70720, 70980;
  ...
Fifth row is 780, 520, 624, 585, 600. These are 1/2, 1/3, 2/5, 3/8, 5/13 of c_5 = 1560.
		

Crossrefs

Programs

  • PARI
    row(n)={my(m=lcm(vector(n,k,fibonacci(k+2)))); vector(n, k, fibonacci(k)*m/fibonacci(k+2))}

Formula

T(n,k) = A035105(n+2) * A000045(k) / A000045(k+2).

A369562 Smallest positive n-digit number divisible by 7.

Original entry on oeis.org

7, 14, 105, 1001, 10003, 100002, 1000006, 10000004, 100000005, 1000000001, 10000000003, 100000000002, 1000000000006, 10000000000004, 100000000000005, 1000000000000001, 10000000000000003, 100000000000000002, 1000000000000000006, 10000000000000000004, 100000000000000000005
Offset: 1

Author

J. Lowell, Jan 25 2024

Keywords

Comments

The only semiprime terms are a(2) = 14 and a(n) such that (10^(n-1) + 3)/7 is a prime. - Jon E. Schoenfield, Jan 27 2024

Examples

			a(3) = 105 = 7*15.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 10^(n - 1) + {6, 4, 5, 1, 3, 2}[[Mod[n, 6, 1]]]; Array[a, 30]
    (* or *)
    LinearRecurrence[{11, -10, -1, 11, -10}, {7, 14, 105, 1001, 10003, 100002}, 30] (* Amiram Eldar, Jan 27 2024 *)
    Table[10^n+7-PowerMod[10,n,7],{n,0,20}] (* Harvey P. Dale, Jan 13 2025 *)

Formula

a(n) = (floor(10^(n-1)/7) + 1)*7.
a(n) = 10^(n-1) + A033940(n+2). - Amiram Eldar, Jan 27 2024
G.f.: 7*x*(1 - 9*x + 3*x^2 - x^3 - 3*x^4)/((1 - x)*(1 + x)*(1 - 10*x)*(1 - x + x^2)). - Stefano Spezia, Jan 28 2024

A367420 Numbers k with the property that if a Fibonacci number f is divisible by k then f is also divisible by 2*k.

Original entry on oeis.org

4, 6, 9, 12, 14, 17, 18, 19, 20, 22, 23, 24, 27, 28, 30, 31, 36, 38, 42, 44, 45, 46, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 72, 76, 78, 79, 81, 82, 83, 84, 85, 86, 90, 92, 93, 94, 95, 98, 99, 100, 102, 107, 108, 109, 110, 112, 114, 115, 116, 117
Offset: 1

Author

J. Lowell, Nov 17 2023

Keywords

Comments

If k is a term then so is b*k for any odd b.

Examples

			4 is in the sequence as any Fibonacci number divisible by 4 is divisible by 2*4.
		

Crossrefs

Programs

  • Python
    def is_A367420(k):
        a, b = 1, 1
        while((a,b)!=(0,1)):
            if (a==k): return False
            a, b = b, (a+b)%(2*k)
        return True
    print([k for k in range(1, 1000) if is_A367420(k)])  # Robin Visser, Jan 08 2024

Extensions

More terms from David A. Corneth, Nov 17 2023

A365965 Numbers k such that A139315(k) = 0 but k is not in A138511.

Original entry on oeis.org

30, 50, 68, 76, 90, 92, 98, 116, 124, 132, 148, 150, 154, 160, 164, 165, 172, 174, 182
Offset: 1

Author

J. Lowell, Sep 23 2023

Keywords

Examples

			30 is not in A138511, but A139315(30)=0.
		

Crossrefs

A363882 Take 2 copies of Pascal's triangle. One copy has one inch between the terms of each row and the other copy has two inches between the terms of each row. Put one on top of the other so that the 1's at the very top of each copy coincide. Sequence is a triangle giving the differences between the overlapping terms.

Original entry on oeis.org

0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 4, 4, 4, 0, 1, 5, 10, 10, 5, 1, 0, 6, 12, 20, 12, 6, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 8, 24, 56, 64, 56, 24, 8, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 10, 40, 120, 200, 252, 200, 120, 40, 10, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Author

J. Lowell, Jun 25 2023

Keywords

Examples

			Row n=8 is formed by taking row 8 of Pascal's triangle (1, 8, 28, 56, 70, 56, 28, 8, 1) and subtracting row 4 (1, 4, 6, 4, 1) spaced 2 apart. The numbers that overlap are 1, 28, 70, 28, 1 over 1, 4, 6, 4, 1, from which 1-1=0, 28-4=24, 70-6=64, 28-4=24, and 1-1=0. Thus, row 8 of the present triangle is 0, 8, 24, 56, 64, 56, 24, 8, 0.
Subtracting:
  1;                1;               0,
  1, 1;                              1, 1;
  1, 2, 1;       -  1,    1;      =  0, 2, 0;
  1, 3, 3, 1;                        1, 3, 3, 1;
  1, 4, 6, 4, 1;    1,    2,    1;   0, 4, 4, 4, 0;
  ...
Resulting triangle begins:
      k=0  1  2  3  4
  n=0:  0;
  n=1:  1, 1;
  n=2:  0, 2, 0;
  n=3:  1, 3, 3, 1;
  n=4:  0, 4, 4, 4, 0;
  ...
		

Crossrefs

Cf. A007318.

Formula

T(n,k) = binomial(n,k) - [n mod 2 = k mod 2 = 0] * binomial(n/2,k/2).

A363299 a(n) is the sum of the n-th powers of the terms of row 4 of Pascal's triangle.

Original entry on oeis.org

5, 16, 70, 346, 1810, 9826, 54850, 312706, 1810690, 10601986, 62563330, 371185666, 2210336770, 13194911746, 78901035010, 472332468226, 2829699842050, 16961019183106, 101697395621890, 609909495824386, 3658357463318530, 21945746733400066, 131656888214355970, 789870960541958146
Offset: 0

Author

J. Lowell, May 26 2023

Keywords

Examples

			a(2) = 1^2 + 4^2 + 6^2 + 4^2 + 1^2 = 1 + 16 + 36 + 16 + 1 = 70.
		

Crossrefs

Cf. A007318.
Cf. A000012 (row 0), A007395 (row 1), A052548 (row 2), A115099 (row 3).

Programs

  • Mathematica
    Table[6^n + 2*(4^n + 1), {n, 0, 24}] (* Amiram Eldar, May 27 2023 *)
  • Python
    def A363299(n): return 2+(((1<Chai Wah Wu, Jun 27 2023

Formula

a(n) = 2 + 2*4^n + 6^n.
From Natalia L. Skirrow, Jun 25 2023: (Start)
G.f.: (5-39*x+64*x^2)/((1-x)*(1-4*x)*(1-6*x)).
E.g.f.: 2*e^x + 2*e^(4*x) + e^(6*x).
(End)

A357582 a(n) = A061300(n+1)/A061300(n).

Original entry on oeis.org

1, 2, 6, 30, 154, 1105, 4788, 20677, 216931, 858925, 7105392, 5546059, 2018025900, 1480452337, 3238556831, 107972737, 18425956230000, 4683032671, 14053747110612300, 160436746661, 33809725025123, 15260431896321667, 1583855315457687090000
Offset: 0

Author

J. Lowell, Oct 04 2022

Keywords

Comments

It is not known if the ratios A061300(n+1)/A061300(n) are always integer, but so far (for the listed terms) they are. - Max Alekseyev, Sep 05 2023

Examples

			a(5) = 1105 as A061300(5+1) / A061300(5) = 61261200 / 55440 = 1105.
		

Crossrefs

Cf. A061300.

Programs

  • Mathematica
    A061300[n_Integer?NonNegative] := A061300[n] = Module[{fact = n!, num = 1}, Monitor[While[Length@Divisors@num != fact, num++]; num, {n, num}]]; a[n_] := A061300[n + 1]/A061300[n]; Table[a[n], {n, 0, 4}] (* Robert P. P. McKone, Sep 07 2023 *)

Extensions

a(11)-a(21) from David A. Corneth, Oct 05 2022
a(22)-a(29) from Max Alekseyev, Sep 05 2023

A357249 a(n) = A139315(n)*n.

Original entry on oeis.org

2, 6, 24, 60, 360, 840, 10080, 7560, 0, 27720, 332640, 720720, 0, 10810800, 17297280, 36756720, 1102701600, 698377680, 27935107200, 48886437600, 0, 16062686640, 385504479360, 1204701498000, 0, 20238985166400, 4497552259200, 6987268688400, 0, 216605329340400
Offset: 2

Author

J. Lowell, Sep 19 2022

Keywords

Examples

			a(8) = A139315(8)*8 = 1260*8 = 10080.
		

Crossrefs

Formula

a(n) = A129902(A139315(n)).

Extensions

More terms from Michel Marcus, Sep 20 2022

A356078 Highly composite numbers that are multiples of their number of divisors.

Original entry on oeis.org

1, 2, 12, 24, 36, 60, 180, 240, 360, 720, 1260, 1680, 5040, 10080, 15120, 20160, 25200, 55440, 110880, 221760, 277200, 665280, 720720, 1441440, 2882880, 3603600, 8648640, 14414400, 32432400, 43243200, 61261200, 245044800, 551350800, 735134400, 1102701600, 2205403200
Offset: 1

Author

J. Lowell, Jul 25 2022

Keywords

Comments

Conjecture: this sequence is finite. The prime factorization of the number of divisors of a large highly composite number usually has a high power of 2; this is not true of the number of divisors of a highly composite number itself.

Examples

			180 (in A002182) has 18 divisors, and 180/18 equals 10; so, 180 is in this sequence.
		

Crossrefs

Intersection of A002182 and A033950.
Cf. A002183.

Extensions

More terms from Amiram Eldar, Jul 25 2022

A355286 Highly composite numbers that are not a product of two highly composite numbers greater than 1.

Original entry on oeis.org

1, 2, 6, 60, 180, 840, 1260, 25200, 27720, 83160, 277200, 720720, 1081080, 3603600, 10810800, 32432400, 36756720, 61261200, 110270160, 183783600, 551350800, 698377680, 2095133040, 2327925600, 3491888400, 10475665200, 48886437600, 64250746560, 73329656400, 80313433200
Offset: 1

Author

J. Lowell, Jun 26 2022

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Jun 27 2022