J. Lowell has authored 273 sequences. Here are the ten most recent ones:
A374667
Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) = c_n * F(k)/F(k+2) where c_n = LCM of F(3), F(4), ... F(n+2) (and F() are the Fibonacci numbers).
Original entry on oeis.org
1, 3, 2, 15, 10, 12, 60, 40, 48, 45, 780, 520, 624, 585, 600, 5460, 3640, 4368, 4095, 4200, 4160, 92820, 61880, 74256, 69615, 71400, 70720, 70980, 1021020, 680680, 816816, 765765, 785400, 777920, 780780, 779688, 90870780, 60580520, 72696624, 68153085, 69900600, 69234880, 69489420, 69392232, 69429360
Offset: 1
Triangle begins:
1;
3, 2;
15, 10, 12;
60, 40, 48, 45;
780, 520, 624, 585, 600;
5460, 3640, 4368, 4095, 4200, 4160;
92820, 61880, 74256, 69615, 71400, 70720, 70980;
...
Fifth row is 780, 520, 624, 585, 600. These are 1/2, 1/3, 2/5, 3/8, 5/13 of c_5 = 1560.
-
row(n)={my(m=lcm(vector(n,k,fibonacci(k+2)))); vector(n, k, fibonacci(k)*m/fibonacci(k+2))}
A369562
Smallest positive n-digit number divisible by 7.
Original entry on oeis.org
7, 14, 105, 1001, 10003, 100002, 1000006, 10000004, 100000005, 1000000001, 10000000003, 100000000002, 1000000000006, 10000000000004, 100000000000005, 1000000000000001, 10000000000000003, 100000000000000002, 1000000000000000006, 10000000000000000004, 100000000000000000005
Offset: 1
-
a[n_] := 10^(n - 1) + {6, 4, 5, 1, 3, 2}[[Mod[n, 6, 1]]]; Array[a, 30]
(* or *)
LinearRecurrence[{11, -10, -1, 11, -10}, {7, 14, 105, 1001, 10003, 100002}, 30] (* Amiram Eldar, Jan 27 2024 *)
Table[10^n+7-PowerMod[10,n,7],{n,0,20}] (* Harvey P. Dale, Jan 13 2025 *)
A367420
Numbers k with the property that if a Fibonacci number f is divisible by k then f is also divisible by 2*k.
Original entry on oeis.org
4, 6, 9, 12, 14, 17, 18, 19, 20, 22, 23, 24, 27, 28, 30, 31, 36, 38, 42, 44, 45, 46, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 72, 76, 78, 79, 81, 82, 83, 84, 85, 86, 90, 92, 93, 94, 95, 98, 99, 100, 102, 107, 108, 109, 110, 112, 114, 115, 116, 117
Offset: 1
4 is in the sequence as any Fibonacci number divisible by 4 is divisible by 2*4.
-
def is_A367420(k):
a, b = 1, 1
while((a,b)!=(0,1)):
if (a==k): return False
a, b = b, (a+b)%(2*k)
return True
print([k for k in range(1, 1000) if is_A367420(k)]) # Robin Visser, Jan 08 2024
A365965
Numbers k such that A139315(k) = 0 but k is not in A138511.
Original entry on oeis.org
30, 50, 68, 76, 90, 92, 98, 116, 124, 132, 148, 150, 154, 160, 164, 165, 172, 174, 182
Offset: 1
30 is not in A138511, but A139315(30)=0.
A363882
Take 2 copies of Pascal's triangle. One copy has one inch between the terms of each row and the other copy has two inches between the terms of each row. Put one on top of the other so that the 1's at the very top of each copy coincide. Sequence is a triangle giving the differences between the overlapping terms.
Original entry on oeis.org
0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 4, 4, 4, 0, 1, 5, 10, 10, 5, 1, 0, 6, 12, 20, 12, 6, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 8, 24, 56, 64, 56, 24, 8, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 10, 40, 120, 200, 252, 200, 120, 40, 10, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Row n=8 is formed by taking row 8 of Pascal's triangle (1, 8, 28, 56, 70, 56, 28, 8, 1) and subtracting row 4 (1, 4, 6, 4, 1) spaced 2 apart. The numbers that overlap are 1, 28, 70, 28, 1 over 1, 4, 6, 4, 1, from which 1-1=0, 28-4=24, 70-6=64, 28-4=24, and 1-1=0. Thus, row 8 of the present triangle is 0, 8, 24, 56, 64, 56, 24, 8, 0.
Subtracting:
1; 1; 0,
1, 1; 1, 1;
1, 2, 1; - 1, 1; = 0, 2, 0;
1, 3, 3, 1; 1, 3, 3, 1;
1, 4, 6, 4, 1; 1, 2, 1; 0, 4, 4, 4, 0;
...
Resulting triangle begins:
k=0 1 2 3 4
n=0: 0;
n=1: 1, 1;
n=2: 0, 2, 0;
n=3: 1, 3, 3, 1;
n=4: 0, 4, 4, 4, 0;
...
A363299
a(n) is the sum of the n-th powers of the terms of row 4 of Pascal's triangle.
Original entry on oeis.org
5, 16, 70, 346, 1810, 9826, 54850, 312706, 1810690, 10601986, 62563330, 371185666, 2210336770, 13194911746, 78901035010, 472332468226, 2829699842050, 16961019183106, 101697395621890, 609909495824386, 3658357463318530, 21945746733400066, 131656888214355970, 789870960541958146
Offset: 0
a(2) = 1^2 + 4^2 + 6^2 + 4^2 + 1^2 = 1 + 16 + 36 + 16 + 1 = 70.
-
Table[6^n + 2*(4^n + 1), {n, 0, 24}] (* Amiram Eldar, May 27 2023 *)
-
def A363299(n): return 2+(((1<Chai Wah Wu, Jun 27 2023
Original entry on oeis.org
1, 2, 6, 30, 154, 1105, 4788, 20677, 216931, 858925, 7105392, 5546059, 2018025900, 1480452337, 3238556831, 107972737, 18425956230000, 4683032671, 14053747110612300, 160436746661, 33809725025123, 15260431896321667, 1583855315457687090000
Offset: 0
a(5) = 1105 as A061300(5+1) / A061300(5) = 61261200 / 55440 = 1105.
-
A061300[n_Integer?NonNegative] := A061300[n] = Module[{fact = n!, num = 1}, Monitor[While[Length@Divisors@num != fact, num++]; num, {n, num}]]; a[n_] := A061300[n + 1]/A061300[n]; Table[a[n], {n, 0, 4}] (* Robert P. P. McKone, Sep 07 2023 *)
Original entry on oeis.org
2, 6, 24, 60, 360, 840, 10080, 7560, 0, 27720, 332640, 720720, 0, 10810800, 17297280, 36756720, 1102701600, 698377680, 27935107200, 48886437600, 0, 16062686640, 385504479360, 1204701498000, 0, 20238985166400, 4497552259200, 6987268688400, 0, 216605329340400
Offset: 2
a(8) = A139315(8)*8 = 1260*8 = 10080.
A356078
Highly composite numbers that are multiples of their number of divisors.
Original entry on oeis.org
1, 2, 12, 24, 36, 60, 180, 240, 360, 720, 1260, 1680, 5040, 10080, 15120, 20160, 25200, 55440, 110880, 221760, 277200, 665280, 720720, 1441440, 2882880, 3603600, 8648640, 14414400, 32432400, 43243200, 61261200, 245044800, 551350800, 735134400, 1102701600, 2205403200
Offset: 1
180 (in A002182) has 18 divisors, and 180/18 equals 10; so, 180 is in this sequence.
A355286
Highly composite numbers that are not a product of two highly composite numbers greater than 1.
Original entry on oeis.org
1, 2, 6, 60, 180, 840, 1260, 25200, 27720, 83160, 277200, 720720, 1081080, 3603600, 10810800, 32432400, 36756720, 61261200, 110270160, 183783600, 551350800, 698377680, 2095133040, 2327925600, 3491888400, 10475665200, 48886437600, 64250746560, 73329656400, 80313433200
Offset: 1
Comments