A387207 The maximal norm of an additively indecomposable element in the real quadratic field Q(sqrt(D)), where D = A005117(n) is the n-th squarefree number.
2, 1, 1, 3, 2, 10, 5, 3, 2, 1, 4, 9, 1, 11, 2, 26, 7, 6, 10, 4, 2, 1, 9, 19, 13, 10, 7, 21, 9, 2, 25, 13, 9, 7, 58, 29, 15, 2, 16, 33, 33, 3, 14, 10, 18, 74, 1, 3, 2, 82, 41, 21, 43, 13, 22, 30, 7, 18, 5, 24, 25, 51, 34, 4, 106, 53, 27, 11, 37, 28, 57, 9, 59, 2, 122, 61, 42, 16, 130, 65, 11
Offset: 2
Examples
For n = 2, every additively indecomposable element in Q(sqrt(A005117(2))) = Q(sqrt(2)) has norm either 1 or 2, thus a(2) = 2. For n = 3, every additively indecomposable element in Q(sqrt(A005117(3))) = Q(sqrt(3)) has norm 1, thus a(3) = 1. For n = 4, every additively indecomposable element in Q(sqrt(A005117(4))) = Q(sqrt(5)) has norm 1, thus a(4) = 1. For n = 5, every additively indecomposable element in Q(sqrt(A005117(5))) = Q(sqrt(6)) has norm either 1 or 3, thus a(5) = 3.
Links
- Andreas Dress and Rudolf Scharlau, Indecomposable totally positive numbers in real quadratic orders, J. Number Theory 14 (1982), no. 3, 292-306.
- Se Wook Jang and Byeong Moon Kim, A refinement of the Dress-Scharlau theorem, J. Number Theory 158 (2016), 234-243.
- Vítězslav Kala, Norms of indecomposable integers in real quadratic fields, J. Number Theory 166 (2016), 193-207.
- Vítězslav Kala, Universal quadratic forms and indecomposables in number fields: a survey, Commun. Math. 31 (2023), no. 2, 81-114.
- Magdaléna Tinková and Paul Voutier, Indecomposable integers in real quadratic fields, J. Number Theory 212 (2020), 458-482.
Programs
-
SageMath
def a(n): D = [d for d in range(2*n) if Integer(d).is_squarefree()][n-1] K. = QuadraticField(D); OK = K.ring_of_integers(); ans = 0 if (D%4==1): cf, d = continued_fraction((a-1)/2), (a+1)/2 else: cf, d = continued_fraction(a), a s = len(cf.period()) ai = [1]+[c.numer() + c.denom()*d for c in cf.convergents()[:2*s+1]] ind = [ai[i]+t*ai[i+1] for i in range(0, 2*s+1, 2) for t in range(cf[i+1])] return max([c.norm() for c in ind])
Formula
a(n) <= A005117(n) for all n >= 2 [Dress-Scharlau].
Comments