A383643 Number of n-dimensional additively indecomposable positive definite integral lattices (or quadratic forms).
1, 0, 0, 0, 0, 1, 1, 1, 2
Offset: 1
Examples
For n <= 8, the only n-dimensional additively indecomposable positive definite lattices are Z (of dimension 1), E6 (of dimension 6), E7 (of dimension 7), and E8 (of dimension 8). For n = 9, the a(9) = 2 additively indecomposable rank 9 positive definite lattices were computed by Opgenorth. These are the two lattices with Gram matrices: [ 2 1 1 1 1 1 1 1 4] [ 2 1 1 1 2 2 2 2 6] [ 1 2 1 1 1 1 1 1 4] [ 1 2 1 1 2 2 2 2 6] [ 1 1 2 1 1 1 1 1 4] [ 1 1 2 1 2 2 2 2 6] [ 1 1 1 2 1 1 1 1 4] [ 1 1 1 2 2 2 2 2 6] [ 1 1 1 1 2 1 1 1 4] [ 2 2 2 2 5 4 4 4 12] [ 1 1 1 1 1 2 1 1 4] [ 2 2 2 2 4 5 4 4 12] [ 1 1 1 1 1 1 2 1 4] [ 2 2 2 2 4 4 5 4 12] [ 1 1 1 1 1 1 1 2 4] [ 2 2 2 2 4 4 4 5 12] [ 4 4 4 4 4 4 4 4 15], [ 6 6 6 6 12 12 12 12 35], having determinant 7 and determinant 15 respectively.
References
- Jürgen Opgenorth, Additiv unzerlegbare ganzzahlige quadratische Formen in den Dimensionen 9, 10 und 11. Diplomarbeit, RWTH Aachen, 1992.
Links
- Simon Eisenbarth, Additive Zerlegungen von Gittern, Bachelorarbeit, RWTH Aachen, 2014.
- Paul Erdős and Chao Ko, On definite quadratic forms, which are not the sum of two definite or semi-definite forms, Acta Arith. 3, 102-122 (1938).
- Louis J. Mordell, The representation of a definite quadratic form as a sum of two others, Ann. of Math. (2) 38 (1937), no. 4, 751-757.
- Wilhelm Plesken, Additively indecomposable positive integral quadratic forms, J. Number Theory, 47 (1994), no. 3, 273-283.
- Ruiqing Wang, Additively indecomposable positive definite integral lattices, Acta Math. Sin. (Engl. Ser.) 41 (2025), no. 3, 908-924.
Crossrefs
Cf. A380746.
Formula
a(n) >= A380746(n).
Comments