A238451 Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an even number of distinct parts.
0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 0, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0
Offset: 1
Examples
n/k | 1 2 3 4 5 6 7 8 9 10 1: 0 2: 0 0 3: 1 1 0 4: 1 0 1 0 5: 1 1 1 1 0 6: 1 1 0 1 1 0 7: 1 1 1 1 1 1 0 8: 1 1 1 0 1 1 1 0 9: 1 1 1 1 1 1 1 1 0 10: 2 2 2 2 0 1 1 1 1 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
PARI
T(n,k) = {my(m=n-k); if(m>0, polcoef(prod(j=1, m, 1+x^j + O(x*x^m))/(1+x^k) - prod(j=1, m, 1-x^j + O(x*x^m))/(1-x^k), m)/2, 0)} \\ Andrew Howroyd, Apr 29 2020
Formula
T(n,k) = Sum_{j=1..round(n/(2*k))} A067659(n-(2*j-1)*k) - Sum_{j=1..floor(n/(2*k))} A067661(n-2*j*k).
G.f. of column k: (1/2)*(q^k/(1+q^k))*(-q;q){inf} - (1/2)*(q^k/(1-q^k))*(q;q){inf}.
Comments