cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mircea Merca

Mircea Merca's wiki page.

Mircea Merca has authored 118 sequences. Here are the ten most recent ones:

A238451 Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 0, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0
Offset: 1

Author

Mircea Merca, Feb 26 2014

Keywords

Examples

			n/k | 1 2 3 4 5 6 7 8 9 10
   1: 0
   2: 0 0
   3: 1 1 0
   4: 1 0 1 0
   5: 1 1 1 1 0
   6: 1 1 0 1 1 0
   7: 1 1 1 1 1 1 0
   8: 1 1 1 0 1 1 1 0
   9: 1 1 1 1 1 1 1 1 0
  10: 2 2 2 2 0 1 1 1 1 0
		

Crossrefs

Columns k=1..6 are A238215, A238217, A238218, A238219, A238220, A238221.
Row sums are A238132.

Programs

  • PARI
    T(n,k) = {my(m=n-k); if(m>0, polcoef(prod(j=1, m, 1+x^j + O(x*x^m))/(1+x^k) - prod(j=1, m, 1-x^j + O(x*x^m))/(1-x^k), m)/2, 0)} \\ Andrew Howroyd, Apr 29 2020

Formula

T(n,k) = Sum_{j=1..round(n/(2*k))} A067659(n-(2*j-1)*k) - Sum_{j=1..floor(n/(2*k))} A067661(n-2*j*k).
G.f. of column k: (1/2)*(q^k/(1+q^k))*(-q;q){inf} - (1/2)*(q^k/(1-q^k))*(q;q){inf}.
T(n,k) = A015716(n,k) - A238450(n,k). - Andrew Howroyd, Apr 29 2020

A238450 Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 0, 0, 1, 2, 2, 2, 1, 1, 1, 0, 0, 1, 3, 2, 2, 1, 2, 1, 1, 0, 0, 1, 3, 3, 2, 2, 1, 2, 1, 1, 0, 0, 1, 4, 3, 3, 3, 2, 2, 2, 1, 1, 0, 0, 1, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 0, 0, 1
Offset: 1

Author

Mircea Merca, Feb 26 2014

Keywords

Examples

			n\k | 1 2 3 4 5 6 7 8 9 10
   1: 1
   2: 0 1
   3: 0 0 1
   4: 0 0 0 1
   5: 0 0 0 0 1
   6: 1 1 1 0 0 1
   7: 1 1 0 1 0 0 1
   8: 2 1 1 1 1 0 0 1
   9: 2 2 2 1 1 1 0 0 1
  10: 3 2 2 1 2 1 1 0 0 1
		

Crossrefs

Columns k=1..6 are A238208, A238209, A238210, A238211, A238212, A238213.
Row sums are A238131.

Programs

  • PARI
    T(n,k) = {my(m=n-k); if(m>0, polcoef(prod(j=1, m, 1+x^j + O(x*x^m))/(1+x^k) + prod(j=1, m, 1-x^j + O(x*x^m))/(1-x^k), m)/2, m==0)} \\ Andrew Howroyd, Apr 29 2020

Formula

T(n,k) = Sum_{j=1..round(n/(2*k))} A067661(n-(2*j-1)*k) - Sum_{j=1..floor(n/(2*k))} A067659(n-2*j*k).
G.f. of column k: (1/2)*(q^k/(1+q^k))*(-q;q){inf} + (1/2)*(q^k/(1-q^k))*(q;q){inf}.
T(n,k) = A015716(n,k) - A238451(n,k). - Andrew Howroyd, Apr 29 2020

Extensions

Terms a(79) and beyond from Andrew Howroyd, Apr 29 2020

A238221 The total number of 6's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 6, 7, 9, 11, 12, 14, 17, 20, 24, 28, 32, 37, 44, 51, 59, 69, 78, 90, 104, 119, 136, 156, 177, 202, 230, 261, 296, 336, 379, 428, 483, 544, 612, 689, 773, 867, 972, 1088, 1217, 1360, 1518, 1693, 1887
Offset: 0

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(13) = 2 because the partitions in question are: 7+6, 6+4+2+1.
		

Crossrefs

Column k=6 of A238451.

Programs

  • Mathematica
    endpQ[n_]:=Module[{len=Length[n]},EvenQ[len]&&len==Length[Union[n]]]; Table[ Count[Flatten[Select[IntegerPartitions[i],endpQ]],6],{i,0,50}] (* Harvey P. Dale, Mar 03 2014 *)
    nmax = 100; With[{k=6}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/12)} A067659(n-(2*j-1)*6) - Sum_{j=1..floor(n/12)} A067661(n-12*j).
G.f.: (1/2)*(x^6/(1+x^6))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^6/(1-x^6))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238220 The total number of 5's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 2, 2, 2, 3, 3, 5, 6, 7, 8, 9, 12, 14, 16, 19, 22, 27, 31, 36, 42, 48, 56, 65, 75, 86, 99, 114, 130, 149, 170, 193, 220, 250, 283, 321, 364, 410, 463, 522, 587, 661, 742, 832, 933, 1045, 1169, 1306, 1459, 1627, 1814, 2021
Offset: 0

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(13) = 2 because the partitions in question are: 8+5, 5+4+3+1.
		

Crossrefs

Column k=5 of A238451.

Programs

  • Mathematica
    nmax = 100; With[{k=5}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/10)} A067659(n-(2*j-1)*5) - Sum_{j=1..floor(n/10)} A067661(n-10*j).
G.f.: (1/2)*(x^5/(1+x^5))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^5/(1-x^5))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238219 The total number of 4's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 2, 3, 4, 4, 5, 6, 8, 9, 11, 13, 16, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 94, 108, 124, 142, 161, 185, 210, 238, 270, 307, 347, 392, 442, 499, 562, 632, 709, 797, 894, 1000, 1119, 1252, 1398, 1560, 1739, 1937, 2157
Offset: 0

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(13) = 3 because the partitions in question are: 9+4, 6+4+2+1, 5+4+3+1.
		

Crossrefs

Column k=4 of A238451.

Programs

  • Mathematica
    nmax = 100; With[{k=4}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/8)} A067659(n-(2*j-1)*4) - Sum_{j=1..floor(n/8)} A067661(n-8*j).
G.f.: (1/2)*(x^4/(1+x^4))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^4/(1-x^4))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238218 The total number of 3's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15, 17, 20, 24, 27, 32, 38, 43, 50, 59, 67, 77, 90, 102, 117, 135, 153, 175, 200, 226, 257, 292, 330, 373, 422, 475, 535, 603, 677, 760, 853, 955, 1069, 1196, 1336, 1491, 1663, 1853, 2063, 2295
Offset: 0

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(13) = 3 because the partitions in question are: 10+3, 7+3+2+1, 5+4+3+1.
		

Crossrefs

Column k=3 of A238451.

Programs

  • Mathematica
    nmax = 100; With[{k=3}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    seq(n)={my(A=O(x^(n-2))); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x^3)) - eta(x + A)/(1-x^3))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/6)} A067659(n-(2*j-1)*3) - Sum_{j=1..floor(n/6)} A067661(n-6*j).
G.f.: (1/2)*(x^3/(1+x^3))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^3/(1-x^3))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020

A238217 The total number of 2's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 11, 14, 16, 19, 22, 26, 30, 35, 41, 47, 55, 63, 73, 84, 97, 110, 127, 145, 166, 188, 215, 243, 277, 313, 354, 400, 452, 508, 573, 644, 723, 811, 910, 1018, 1139, 1273, 1421, 1586, 1768, 1968, 2190, 2436
Offset: 0

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 10+2, 6+3+2+1, 5+4+2+1.
		

Crossrefs

Column k=2 of A238451.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Length[#] == Length[ Union[#]]&&MemberQ[#,2]&]],{n,0,50}] (* Harvey P. Dale, Dec 09 2014 *)
    nmax = 100; With[{k=2}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    seq(n)={my(A=O(x^(n-1))); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x^2)) - eta(x + A)/(1-x^2))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/4)} A067659(n-(2*j-1)*2) - Sum_{j=1..floor(n/4)} A067661(n-4*j).
G.f.: (1/2)*(x^2/(1+x^2))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^2/(1-x^2))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020

A238215 The total number of 1's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 21, 24, 28, 33, 38, 44, 51, 59, 68, 79, 90, 104, 119, 136, 156, 178, 202, 230, 261, 296, 335, 379, 427, 482, 543, 610, 686, 770, 863, 967, 1082, 1209, 1351, 1508, 1681, 1873, 2085, 2318, 2577
Offset: 0

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 11+1, 6+3+2+1, 5+4+2+1.
		

Crossrefs

Column k=1 of A238451.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
         `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t)))
        end:
    a:= n-> b(n-1, 2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 01 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i + 1, t] + b[n - i, i + 1, 1 - t]]];
    a[n_] := b[n - 1, 2, 0];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
  • PARI
    seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) - eta(x + A)/(1-x))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/2)} A067659(n-(2*j-1)) - Sum_{j=1..floor(n/2)} A067661(n-2*j).
G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) - (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Nov 07 2024

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020

A238213 The total number of 6's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 17, 20, 23, 27, 33, 38, 44, 51, 59, 68, 79, 91, 104, 119, 136, 155, 178, 202, 230, 261, 296, 335, 379, 428, 483, 544, 612, 688, 773, 867, 972, 1088, 1217, 1360, 1518, 1693, 1887
Offset: 0

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 2 because the partitions in question are: 6+5+1, 6+4+2.
		

Crossrefs

Column k=6 of A238450.

Programs

  • Mathematica
    nmax = 100; With[{k=6}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/12)} A067661(n-(2*j-1)*6) - Sum_{j=1..floor(n/12)} A067659(n-12*j).
G.f.: (1/2)*(x^6/(1+x^6))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^6/(1-x^6))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020

A238212 The total number of 5's in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 2, 2, 3, 5, 4, 5, 7, 8, 10, 11, 13, 16, 19, 23, 26, 31, 36, 42, 49, 56, 65, 75, 86, 100, 114, 130, 149, 170, 193, 220, 250, 283, 321, 363, 410, 463, 522, 587, 660, 742, 832, 933, 1045, 1168, 1307, 1459, 1627, 1814, 2020
Offset: 0

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 2 because the partitions in question are: 6+5+1, 5+4+3.
		

Crossrefs

Column k=5 of A238450.

Programs

  • Mathematica
    tn5[n_]:=Module[{op=IntegerPartitions[n],m},m=Flatten[Select[op,OddQ[ Length[#]] && Length[#]==Length[Union[#]]&]];Count[m,5]]; Array[tn5,60,0] (* Harvey P. Dale, Feb 06 2015 *)
    nmax = 100; With[{k=5}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/10)} A067661(n-(2*j-1)*5) - Sum_{j=1..floor(n/10)} A067659(n-10*j).
G.f.: (1/2)*(x^5/(1+x^5))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^5/(1-x^5))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020